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Chapter 1

Preliminaries

1.1 Basic algebra

1.1.1 Algebraic expressions

Algebraic expressions are formed from numbers, letters and arithmetic operations. The letters may rep-
resent unknown variables, which should be found from solutions of equations, or parameters (unknown
numbers) on which the solutions depend.

Below, we review examples several basic operations which help us to work with algebraic express of
ions.

One of the most basic algebraic operations is opening of parentheses, or simplification of expressions.
For that we use the following rule:

(a+b)∗ (c+d) = ac+ad +bc+bd

note, that here ac means a∗ c, etc., as in algebra the multiplication is often omitted.

Example (open parenthesis): (4x+2a)(2−3x) = 8x−12x2 +4a−6ax

Sometimes we use parentheses to factor expressions:

Example (factor expression): 9x3 +3x2−6a4x2 = x2(9x+3−6a4) = 3x2(3x+1−2a4)

In many cases we also need to work with fractions:

Example (the same denominator): a2−ca
3 = a2

3 − ca
3

Example (different denominators): a2

b + b
a = a2

b
a
a +

b
a

b
b = a2∗a

ab + b∗b
ab = a3+b2

ab

Example (fractions simplifications): a2−ca
3a = a−c

3

To divide a fraction a
b by another fraction c

d we just need to multiply it by its inverse d
c : a

b : c
d = a

b ∗ d
c =

ad
bc ,

Example (division): 4
7 : 2a

5 = 4
7

5
2a = 20

14a = 10
7a

Also note that: x+y
z+d 6=x

z +
y
d

5
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1.1.2 Limits

We call A a limit of the function f (x) when x approaches a, if the value of f (x) get closer and closer to
A when x takes values closer and closer to a. We write it formally as:

lim
x→a

f (x) = A (1.1)

In many cases, finding the limit is trivial: we just need to substitute the value of x = a into our function:

lim
x→a

f (x) = f (a) (1.2)

Example: lim
x→2

x3 = 23 = 8

Functions which have such property are called continuous and most of the functions used in biology are
continuous. However, there are several important exception.

The first case, which will be the most important for us, is finding of limit of the function when x→ ∞.
Finding such limits is important as it gives an asymptotic behaviour of our system when the size of a
population becomes very large. Unfortunately, there is no such number ’∞’ which we can substitute
into our function to find a limit using formula (1.2). For functions without parameters, we can guess the
limit by substituting large values to (1.2), e.g. x = 10000,20000,etc, but what to do for functions with
parameters?

Let us discuss this problem for a special class of functions, which are the most relevant to our course,
the so called rational functions f (x) = p(x)

g(x) , where p(x) and g(x) are polynomials. In that case we can
always find the limit using the following property of the power function:

lim
x→∞

C
xα = 0 (1.3)

where C is an arbitrary constant and α > 0.

To prove it note that if x approaches ∞ (becomes larger and larger), the power function xα with α > 0
also becomes larger and larger and therefore C

xα will be closer and closer to zero, thus in accordance with
the definition lim

x→∞
C
xα = 0

To find the limit using this rule we need to do the following: (1) find the highest power of x in our
expression p(x)

g(x) , (2) divide each term in our function by x in that power, and (3) find the limit of each
term using property (1.3). Let us consider three typical examples:

Example (find the limit): lim
N→∞

aN2−3N
3−2N2 .

The highest power is N2, division gives:
aN2

N2 −3 N
N2

3
N2− 2N2

N2

=
a− 3

N
3

N2−2
. The limits of the individual terms are:

a−0
0−2 =−a

2

Example (find the limit): lim
P→∞

aP−3bP3

cP−dP2 , a,b,c,d 6= 0.
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Similar steps give us: aP−3bP3

cP−dP2 =
aP
P3− 3bP3

P3
cP
P3− dP2

P3

=
a

P2−3b
c

P2− d
P
= 0−3b

0−0 = −3b
0 . This expression does not have sense

as we cannot divide by zero and we do not have a finite limit for this function.

Example (find the limit): lim
x→∞

ax3−bx2+c
ax4−b , a,b,c 6= 0 .

ax3−bx2+c
ax4−b =

ax3

x4 − bx2

x4 + c
x4

ax4

x4 − b
x4

=
a
x− b

x2 +
c

x4

a− b
x4

= 0−0+0
a−0 = 0

a = 0.

Another non-trivial situation occurs when the denominator of our function f (x) = p(x)
g(x) becomes zero for

some value of x, for example f (x) = 2
x−3 for x = 3. In this case the formula (1.2) for limit cannot be

used and other more careful analysis is necessary. If using of calculator we substitute some numbers
into our function around point 3 we will find the following: if x becomes closer and closer to 3 from the
left, e.g. x = 3.1;3.05;3.01,3.005;etc the function value becomes larger and larger, while if x becomes
closer and closer to 3 from the right, e.g. x = 2.9;2.95;2.99,2.995;etc the function value is negative
and its absolute value also becomes larger and larger. We can formally write it as lim

x→3+
2

x−3 =+∞, while

lim
x→3−

2
x−3 = −∞. However, in a strict sense, as there is no real number for which f (x) approaches for x

close to 3 (from either side) thus the limit here does not exist.

We will use limits for drawing our functions and will see that limits at infinity give us horizontal asymp-
totes of our graphs, while blow up of functions for some x (as in the last example) give us vertical
asymptotes.

1.1.3 Equations

An equation is a mathematical relationship involving unknown variables. These unknowns are usually
expressed by letters ’x’, ’y’, however in biology we use many other letters (e.g. ’N’, ’P’. ’T’, ’V’,
etc.), which maybe somewhat related to the name of the species they describe. Solving equations means
finding unknown(s) such that after substitution in the equation the left and right hand sides will be equal
to each other. For example: equation 2x−16 =−10 has a solution x = 3, as 2∗3−16 = 6−16 =−10.

The usual way to solve equations which have unknown variables in the first power only (linear equations),
is to isolate the unknowns:

x = [known numbers]

We can achieve that by using the following rules of equation algebra: (1) we can multiply, or divide
both sides of the equation by the same number, and (2) we can move numbers/expressions from one to
the other side of the equation, by changing their sign. The proof of these rules is trivial. Indeed if two
expressions are the same X =Y , then if we multiply (or divide) both of them by the same number a, they
still will be the same aX = aY . Similarly if X = Y +a, we can add −a to the both sides of the equation,
which will not change the equality, but we get: X −a = Y +a−a, or X −a = Y . Thus we see, that we
were able to move a from the right hand side to the left hand side of our equation, but it changed its sign
as a result.

Example(solve equation): 4−2x = 2−4x.

Solution:−2x+4x = 2−4 2x =−2 x =−1
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For a quadratic equation ax2 + bx+ c = 0 we use the ’abc’ formula, which gives us the solutions as
x1,2 =

−b±
√

b2−4ac
2a .

Example (solve equation): x+1 = 4
1+x .

Solution: (1+x)(x+1) = 4 1+x+x2+x = 4; x2+2x+1−4 = 0; x2+2x−3 = 0 from the ’abc’

formula x1,2 =
−2±
√

4−4∗1∗(−3)
2 = −2±

√
16

2 = −2±4
2 x1 = 1;x2 =−3.

Equation may also contain parameters. A parameter is an unknown number (constant) that may have any
value. It is different from the unknown variable, as the parameter is just a constant on which our solution
depends.

Example (solve equation): a k
P2 −dP = 0, where P in unknown variable and a,k,d > 0 are parameters.

Solution: By multiplying both sides by P2 we get ak− dP ∗P2 = 0, or ak = dP ∗P3, or P3 = ak
d , thus

P = 3
√

ak
d . We see that the solution depends on 3 parameters and if someone provides us with their values

we will be able to find the solution by substituting the parameter values into the final formula.

1.1.4 Systems of equations

To solve a system of two linear equations we express one variable via the other and substitute it into the
other equation.

Example (solve the system of equations):
{

2x+ y = 5
x+ y = 3

Solution: From the second equation we find x= 3−y, so we substitute x into the first equation: 2(3−y)+
y = 5; 6−2y+y = 5; −y =−1; y = 1, now substitute this value to x = 3−y and find x = 3−1−2,
thus the solution is x = 2,y = 1.

Unfortunately, there are no general rules to solve a system of nonlinear equations. The usual practical
way is to start with a more simple equation, try to obtain from it as much information as possible and
then substitute it to the other equation. It is also very helpful to factor expressions in order to simplify
them.

Example (solve the system of equations):
{

2n−2n2−2np = 0
np−2p = 0

Solution: From the second equation by factoring we find np− 2p = p(n− 2) = 0. The product is zero
only if one of the multipliers is zero, thus we have two possibilities p = 0 or n = 2. If we substitute p = 0
into the first equation we find 2n−2n2−0 = 0, or 2n(1−n) = 0, thus for p = 0 we have two solutions
n = 0, or n = 1; now substitute n = 2 into the first equation: 2∗2−2∗4−2∗2∗ p = 0, 4−8−4p = 0,
−4p = 4, thus for n = 2 we found p =−1. Overall, we found the following three solutions of the given
system (n = 0, p = 0),(n = 1, p = 0),(n = 2, p =−1).

Systems may also contain parameters.

Example (solve the system):
{

an−an2−bnp = 0
np− kp = 0

, where n, p are variables and a,b,k > 0, are the

parameters.
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Solution: We proceed similarly as in the previous case. From the second equation: np−kp = p(n−k) =
0, thus we have two cases p = 0 or n = k. After substituting p = 0 into the first equation we get:
an−an2−0 = 0, an(1−n)−0, thus n = 0, or n = 1; after substituting n = k into the first equation we
get: ak− ak2− bkp = 0, ak(1− k) = bkp, a(1− k) = bp, thus p = a(1−k)

b . Therefore, we found three
solutions: (n = 0, p = 0),(n = 1, p = 0),(n = k, p = a(1−k)

b ). It is easy to see that if we substitute the
parameter values a = 2,b = 2,k = 2 to these formulas we obtain the solution of the previous problem.
Note also, that for systems with parameters we need to be careful as not all operations are allowed
for arbitrary parameter values. In our example in order to obtain the solution we had to make several
divisions by parameters a,b, and k. However we can always do that as the parameters are positive
numbers (a,b,k > 0) and thus they cannot be equal to zero.

Finally note, that we can solve systems of three and more equations similarly, by subsequent substitutions
from one equation to another, etc..

1.2 Functions of one variable

In science the relationships between quantities are normally expressed using functions. The simplest
type of functions are functions of one variable. The function of one variable f is a rule that allows us to
find the value of a variable (number) f from a single variable (number) x. We denote it as f (x). Below
are examples of the most important functions:

power functions xa, for example

f (x) = x
1
2 =
√

x; f (x) = x−2 =
1
x2 . (1.4)

polynomials, ax3 + ..+ cx+d, for example:

f (x) = 3x3−2x2 +1 (1.5)

rational functions f (x) = p(x)
g(x) :

f (x) =
2− x
x2 +1

(1.6)

trigonometric functions sin, cos, tan:

f (x) = 2∗ sin(x); f (x) = cos(2x−1); f (x) = tan(
x
2
) (1.7)

exponential ax and logarithmic function alog(x)

f (x) = ex+1; f (x) =10 log(2x); f (x) = 22x (1.8)

etc.
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x

f(x)

x*

Figure 1.1:

The derivative of a function f (x) at point x∗ is given by the following limit:

f ′(x∗) =
d f
dx

= lim
x→x∗

f (x)− f (x∗)
x− x∗

(1.9)

The derivative f
′
(x∗) shows the rate of change of a function f (x) at a point x∗ and has many important

applications:

• If x(t) is the distance traveled by a car as a function of time t, then dx/dt gives the velocity of the
car.

• If n(t) is the size of a population as the function of time, then dn/dt gives the rate of growth of the
population.

Geometrically, the derivative f
′
(x∗) gives the slope of the tangent line to the graph of the function at the

point x∗ (fig.1.1).

A graph of a line tangent to the function f (x) at point x∗ (fig.1.1) is given by the following equation:

y = f (x∗)+ f ′(x∗)∗ (x− x∗) (1.10)

Equation (1.10) is also known as a linear approximation of function f (x) at point x∗:

Let us check formula (1.10) by approximating the function y = 2x2 + 1 at x∗ = 1. We find: f (x∗) =
2 ∗ 12 + 1 = 3, f ′ = 4x, f ′(1) = 4, hence f (x) ≈ 3+ 4 ∗ (x− 1). At x = 1.1 this approximate formula
gives f (1.1) ≈ 3+ 4 ∗ (1.1− 1) = 3.4. The exact value is f (1.1) = 2 ∗ 1.12 + 1 = 3.42. So the error is
just 0.6%. However, if x = 0, f (0)≈ 3+4∗ (0−1) =−1 while the exact value is f (0) = 1. So we see,
that the approximate formula works good if x is close to x∗ only.

Functions with parameters. Functions may depend not only on variable(s) but also on parameters. We
have already seen the following example of the function f (x) that depends on three parameters a,b,c:

f (x) = ax2 +bx+ c (1.11)

Equation (1.11) describes a general quadratic polynomial. If we choose, for example a= 3,b=−2,c= 1
we will get the function given by equation (1.5). Studying functions with parameters allows us to obtain
results for whole classes of functions. We will frequently use functions with parameters in our course.
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This is because biological models usually depend on many (up to hundreds) parameters and in many
situations the exact values of these parameters are unknown. One of practical difficulties in working
with parameters is that use of calculators is very limited, because calculators cannot do calculations with
unknown quantities. The most valuable methods to study functions with parameters are direct algebraic
computations and analysis of the obtained formulas. In this course we will widely use the graphical
methods of representation of function. Let us start with review of the basic function graphs.

1.3 Graphs of functions of one variable

Example of graphs. We usually represent functions using graphs. To do that we plot the value of the
variable x along the x-axis and the value of the function f (x) along the y-axis. Let us start first by listing
typical graph shapes that are important in this course.

x x

y yy

x

y=−1

y=2
y=p

p

a b c

Figure 1.2:
Equation y = p produces a horizontal line at the level p (fig.1.2).

x x

y yy

x

a b c

p

x=px=−1x=2

Figure 1.3:
Equation x = p produces a vertical line shifted by p from the y-axis (fig.1.3)
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x x

y yy

x

a b c

y=2x

aa

y=ax (a>0)
y=3x 

y=0.5x 

y=ax (a<0)
y=−1.1x

y=−0.2x

Figure 1.4:
Equation y = ax+ p (linear function) produces a straight line with the slope defined by the parameter a:
the larger the absolute value of a, the steeper is the slope (fig.1.4).

x x

y yy

x

a b c

y=2x+2 y=2x−1
y=ax+p

p

y

2−

−1−

Figure 1.5:
The parameter p in y = ax+ p accounts for the vertical shift of the graph fig.1.4.

x x

y yy

x

a b c

y=x2
2a

a

y=ax (a>0)

y=ax (a<0)

y=0.7x2

2y=1.2x

2

2

y=−1.5x    2

y=−0.5x    2

Figure 1.6:
Equation y = ax2 produces a parabola, if a > 0 the parabola is opened upward (fig.a,b), and if a < 0 the
parabola is opened downward (fig.c). The larger the absolute value of a is, the steeper is the parabola.
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x x

y yy

x

a b c

2

2y=ax +c

c p q

y=a(x−p)(x−q)

x =−v

x =−

y=ax +bx+c

b
2a

b
2a

2

Figure 1.7:
Equation y = ax2 +bx+c also produces a parabola. Parameter c (fig.1.7a) accounts for the vertical shift
of the graph. Parameter b accounts for a horizontal shift of the parabola. It is possible to show that the
horizontal shift of the parabola is given by − b

2a (fig.1.7b). We can calculate this shift by determining
the location of the vertex of the parabola which is a point of extremum (maximum or minimum) of the
function. At this point the derivative of the function to zero (ax2 + bx+ c)′ = 2ax+ b = 0, Thus the x
coordinate of the vertex is given by xv = − b

2a , or in other words the (vertex of) parabola is shifted by
xv = − b

2a from its central location in (fig.1.7a. Note also, that a parabola may have up to two points
of intersection of the graph with the x-axis (zeros of the function). They can be found from the ’abc’
formula for roots of the equation ax2 + bx+ c = 0, and if these roots (p,q) are known, the graph can
easily be depicted using them (fig.1.7c). Note, that in this case the vertex of the parabola is always
located at the middle between these two roots.

x x

y yy

x

a b c

y=ax  +bx  +cx  +d3 2

p r

y=a(x−p)(x−q)(x−r)

y=x3y=−x3

q

Figure 1.8:
For a general cubic function y = ax3 + bx2 + cx+ d we have much more possibilities and we will not
discuss all of them here. The two basic forms are given by the functions y = x3 and y = −x3 depicted
in Fig.1.8a. Important here is the asymptotic behavior of the function at x→±∞. For y = x3 we see
that y goes to +∞ when x increases and to −∞ when x decreases; for y = −x3 we have the opposite
situation. A general graph of y = ax3 +bx2 + cx+d may have up to three zeros that can be found from
the solution of the equation ax3 + bx2 + cx+ d = 0, and up to two extrema (fig.1.8b). The extrema are
points where the derivative of the function is zero, which in this case results in the following quadratic
equation: (ax3+bx2+cx+d)′ = 3ax2+2bx+c = 0. If the zeros of the function (p,q,r) are known, the
graph can easily be drawn as shown in Fig.1.8c.
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x x

y yy

x
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y=  x
3

y=  xx=y2

Figure 1.9:
Three examples of graphs of the power function xa involving fractional powers are shown in Fig.1.9. If
0 < a < 1 than the graph growth is slower than the function y = x and is concave downward (in the first
quadrant). To draw graph y =

√
x let us use the graph of parabola y = x2 discussed in Fig.g1d5a. If in

function y = x2 we switch the x and y we will get x = y2, which is equivalent to y = ±√x. The graph
x = y2 can be found by switching the x and the y-axis for the graph of the parabola y = x2 in Fig.1.6a
and we get a curve depicted in fig.1.9a in which the upper branch corresponds to y =

√
x (fig.1.9b) and

the lower branch corresponds to y =−√x. Similarly, the graph of the function y = 3
√

x (Fig.1.9c) can be
found by a 90o rotation of the graph of the function y = x3 from Fig.1.8a.

x x

yy

x

a b

y= 1
x

y=            + b
x+a

1

b

y

c

x+ay=            
x

slope           a
1

1a

Figure 1.10:
Rational functions p(x)

q(x) are very important in theoretical biology. The graph of the function y = 1
x

(Fig.1.10a) has the vertical asymptote (x = 0) and the horizontal asymptote (y = 0). The graph of func-
tion y = 1

x+a +b can be obtained by a shift of the graph y = 1
x by b units in the y (vertical) direction and

by −a units in the x (horizontal) direction. In this case the vertical asymptote ( x at which function goes
to infinity) is x = −a, as at this point the denominator in 1

x+a equals zero. The horizontal asymptote of
this graph is y = b, given by lim

x→∞
1

x+a +b = b. Another rational function y = x
x+a occurs in the classical

Michaelis-Menten kinetics. Fig.1.10c shows the graph of this function. Because for biological applica-
tions x and a are always considered non-negative (x≥ 0,a > 0), we show the graph in the first quadrant
only. We see that independent of the value of the parameter a the horizontal asymptote is always lo-
cated at y = 1, as lim

x→∞
x

x+a = 1. The slope of this function at x = 0 is given by the function derivative

f ′(x) = ( x
x+a)

′ = a
(x+a)2 at x = 0, which gives a slope of f ′(0) = 1

a .
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Figure 1.12:
Finally in fig.1.12 we show graphs of two other functions that are important in this course eλt and sin(x).
Note that if t grows the function eλt approaches zero if λ < 0 and diverges to infinity if λ > 0. The
function sin(x) oscillates with a period of 2π between −1 and +1.
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a b

1
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1
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y
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22

x + a2 2

2

slope=0           

Figure 1.11:
Graphs of similar functions involving a second power: y = 1

x2 and y = 1
x2+a2 , are shown in Fig.1.11a,b.

We see that function y = 1
x2 has a graph similar to that of y = 1

x but located in the first and second
quadrants, rather than first and third. One more difference is that function y = 1

x2+a2 does not have

a vertical asymptote, and always reaches a maximum at x = 0. Function y = x2

x2+a2 is an example of
famous for its ecological applications Hill function y = xn

xn+an with n = 2. Its graph (Fig.1.11c) has a

horizontal asymptote at y = 1 (similar to y = x
x+a ), however, the rate of growth of y = x2

x2+a2 for small x
is slower than for y = x

x+a : the slope of the tangent line at x = 0 here is 0, which can be found from the
derivative of this function.

Tips on graphs

Let us list important rules that may help to plot graphs of function y = f (x) with parameters.

• The graph of the function y = f (x)+ p can be obtained by a vertical shift by p units of the graph of
y = f (x).

Example: In function N
N+b + c, parameter c just shifts the graph of N

N+b by c units above.

• Important points of the graph are points at which the graph crosses the y-axis (y-intercept), given by
y = f (0), and points where the graph crosses the x-axis (zeros of the function), given by f (x) = 0. Note,
that some graphs do not cross the x or the y axis and thus do not have y-intercepts or zeros. For example
graph of function f (x) = 1

x (Fig.1.10a) does not have finite zeros or y-intercepts.
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Example: For function f (N) = N
N+b +c, b,c > 0, the y-intercept is 0

0+b +c = c. Zeros can be found from
N

N+b + c = 0, which gives N + c(N +b) = 0, or N + cN + cb = 0, or N(1+ c) =−cb, thus zero is given
by the formula N =− cb

1+c , which is always valid as c > 0.

• Another important graph feature are asymptotes. To find a horizontal asymptote we need to compute
the lim

x→∞
f (x). For functions without parameters, you can try to compute this limit using calculator by

filling in a large numbers 10000, 20000, etc and looking if the function approaches some constant value.
For functions with parameter, you can try to fill in some ’reasonable’ parameter value and try to find
similarly if the asymptote exists, however the best way here is to find the limit using our plan from
section 1.1.2. A vertical asymptote is usually a point where a denominator of a fraction is zero. Not all
graphs have asymptotes, for example graph of function f (x) = x2 does not have any vertical or horizontal
asymptotes. However, even if the asymptotes are absent it is still useful to understand behavior of the
functions at large x and show it in the graph.

Example: For function N
N+b + c we can find lim

N→∞
as N

N+b + c =
N
N

N
N + b

N
+ c = 1

1+ b
N
+ c = 1

1+0 + c = 1+ c,

thus this graph has a horizontal asymptote y = 1+ c. The vertical asymptote here is at point where
N +b = 0, or line N =−b.

• Several features of the graph can be found from the derivative of the function: a function grows if
its derivative f ′(x) > 0, decreases if f ′(x) < 0 and has a local extremum (maximum or minimum) if
f ′(x∗) = 0. We do not necessarily need to compute these feature for each graph, but it may be helpful
for some functions.

In many applications we will be interested in points of intersection of graphs of two functions f (x) and
g(x). Because at the intersection point functions are equal to each other, such points can be found from
the equation f (x) = g(x).

The above mentioned tips are represented graphically in fig.1.13.
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x−> 8horizontal asymptote y=lim f(x)

y

y−intercept y=f(0)

y=f(x)=
p(x)
q(x)

relative extrema  df/dx=0

Figure 1.13:

Finally let us formulate the main rules for graphing functions with parameters.
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Plan for graphing functions with parameters

1 Try to simplify the function and determine if it belongs to a known class of functions with graphs
from (Fig.1.2-1.11).

2 Computer trail:

(a) Put parameters to ’reasonable’ values and plot the graph using a calculator.

(b) Collect qualitative information such as : number of zeros, existence of vertical and horizontal
asymptotes.

(c) Vary parameter values to see how this changes the shape of the graph.

3 Algebraic approach (note, not all steps may be possible):

(a) Find y-intercept ( f (0)), and zeros of the function ( f (x) = 0).

(b) Find horizontal asymptote from the limit y = lim
x→∞

f (x) and vertical asymptote(s) (for ratio-

nal function p(x)
q(x) they are at the points where the denominator becomes zero (q(x) = 0)) (

fig.1.13).

(c) Find other special points (e.g. maximum, minimum, etc), if they are important determinants
of the graph shape.

(d) Draw the graph and indicate how the graph shape changes for different parameter values.

Example Plot the graph of the function f (x) = ax
x2+c2 x ≥ 0 a > 0 c > 0. Find how the graph depends

on the parameters a and c

Solution.

1 We do not need to simplify the function. The function equation has some similarities with graph
classes listed above, but does not coincide exactly with any of them.

2a Let us put a = c = 1 and plot the graph using calculator (fig.1.14a).

2a The graph (fig.1.14a) has the following characteristic features: the y-intercept here is y = 0,
we see one zero of the function x = 0. If we fill in large values of x, we find that f (1000) =
0.00099, f (5000)= 0.000199 and f (10000)= 0.00009, thus we expect to have a horizontal asymp-
tote y = 0, we do not see any vertical asymptotes and function has an extremum point (maximum).
However, will these features persist for other parameter values? In order to answer that let us
perform an algebraic study.

3a y-intercept is f (0) = a∗0
02+c2 = 0. Zeros of the function are given by ax

x2+c2 = 0, which has only one
solution x = 0, as x2 + c2 6= 0 for all x.

3b The function does not have vertical asymptotes as the denominator cannot be zero (x2+c2 > 0 for

all x and c > 0). To find the horizontal asymptote let us compute y = lim
x→∞

ax
x2+c2 = lim

x→∞

a
x2

x2

x2 +
c2

x2

=

0
1+0 = 0, thus the horizontal asymptote is the x-axis.
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3c Important point here is the location of the maximum of the function. Let us find it. For that let
us find the points where the derivative of the function is zero. The derivative of the function is
f ′(x) = a∗(x2+c2)−2x∗ax

(x2+c2)2 = ac2−ax2

(x2+c2)2 = 0, thus the expression is zero if ac2−ax2 = 0, or x =±c. For
x ≥ 0,c > 0 we have just one solution x = c. The value of the function at this extreme point is
f (c) = ac

c2+c2 =
a
2c , thus the maximum is at (c, a

2c).

3d Let us draw the graph now. Because f (0) = 0 the graph always goes through the origin. Then
the graph will reach the maximum at (c, a

2c) (Fig.1.14a, symbol ’1’) and then approaches the x
axis. If we put all this information together we obtain a qualitative graph shown in fig.1.14b. We
see that it qualitatively coincides with the calculator sketch. Now let us find how the graph shape
depends on the parameter values. We see that the graph has a bell-shape, with a single maximum
at (c, a

2c). The x location of this maximum depends on the parameter c only, but the maximal value
of the function increases if a increases. The solid and the dashed line in Fig.1.14c illustrate how
the graph shape changes if a increases while we keep c constant. Alternatively, if we keep the
a value constant but increase the value of the parameter c (the solid and the dot-dashed line in
fig.1.14c), the x location of the maximum shifts to the right, and the maximal value of the function
a
2c decreases.

Figure 1.14:

1.4 Implicit function graphs

As we know the relation between two variables x and y can be expressed explicitly in terms of a function
y = f (x) that gives us the value of y if we know the value of x. It is also possible that the relation between
x and y is given implicitly as an equation. Such relations are called implicit functions, and their graphs
are implicit function graphs. One of the most effective methods to plot such graphs is to try to solve that
implicit equation and rewrite it as one or several explicit functions. In some cases the relations between
x and y can be plotted directly. Let us consider two examples:

Example: Draw a graph of the function(s) given by equation: x2 + y2 =C2

Solution: We can either rewrite it as two explicit functions y = ±
√

C2− x2 and draw the two graphs
given by this equation. Alternatively, we can note that x2 + y2 gives a square of the distance from the
point (0,0) to the point (x,y), thus equation x2 + y2 = C2 gives the points located at a distance C from
the origin. That is a circle with a radius C with the center at (0,0) (Fig.1.15a). We will use this graph
later in our course in chapter 4 to plot fig.4.8a.

Example: Draw a graph of the function(s) given by equation: aR+ b R2

R+c − dRN = 0, where R,N ≥ 0
are the variables and a,b,c,d ≥ 0 are the parameters.
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Figure 1.15:

Solution: Let us factor the equation:

aR+b
R2

R+ c
−dRN = R(a+b

R
R+ c

−dN) = 0

The product of two numbers is zero if one of these numbers is zero, therefore this equation is equivalent
to:

R = 0
or,

a+b
R

R+ c
−dN = 0

Graphing of R = 0 is trivial. In order to graph a+ b R
R+c − dN = 0 let us rewrite it as dN = a+ b R

R+c ,

or N = a
d +

b
d R

R+c . The horizontal asymptote of this graph is: N = lim
R→∞

a
d +

b
d R

R+c = a
d + b/d = a+b

d . The

vertical asymptote occurs if the denominator of the fraction is zero, i.e. at R = −c. However, because
R ≥ 0 and c > 0 this asymptote will be outside the range of our function. Additionally note that this
function is similar to the graph of Fig.1.10c, but it is shifted upward by a

d . Thus the function graph here
contains two branches R = 0 and N = a

d +
b/dR
R+c that are plotted in Fig.1.15b

1.5 Exercises

Exercises for section 1.1

1. Perform the indicated operations:

(a) (ax−2by)∗ (3y−4bx)+2b∗ (2ax2 +3y2)−8xyb2

(b) 6
r − 5r

30r+5

2. Find limits:

(a) lim
x→∞

ax+q
c2+x2

(b) lim
N→∞

aN2+q
b
N +c2+dN2 , d 6= 0

3. Solve the equation for the specified variable:
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(a) find r in: 3r+2−5(r+1) = 6r+4

(b) find x in: x+ 4
x = 4

(c) find N in: (b− N
k )N = 0

(d) find N in: (b−d(1+ N
k ))N = 0, d 6= 0; k 6= 0

(e) find N in: ( b
1+N/h −d)N = 0, b 6= 0;

4. Solve the system of equations for the specified variables:

(a) find x,y in:
{

x−2y =−5
2x+ y = 10

(b) find x,y in:
{

ax+by = 0
cx+dy =−b

(c) find x,y in:
{

x(1−2x)+ xy = 0
4y− xy = 0

(d) find x,y in:
{

4x− xy− x2 = 0
9y−3xy− y2 = 0

(e) find R,N in:
{

b(1− R
k −d−aN)R = 0

(R−δ)N = 0
, a,b,d,k,δ 6= 0;

Exercises for section 1.2

5. Find the derivative of f (x):

(a) f (x) = 1
x3

(b) f (x) = e−5x;

(c) y = (4x− x2)∗ (2x+3)

(d) y = x
a2−x2

Exercises for section 1.3

6. Without plotting the function find the following information about their graph: find the y-intercept
and zeros; find horizontal or/and vertical asymptotes (if they exist). (Proof of non-existence of
asymptotes is not required).

(a) function y(n) given by y = an2−b
n2+c2 , a,b,c > 0

(b) function N(R) given by N = r
a(h+R)(1− R

K ), r,a,h,K 6= 0

7. Sketch graphs of the following functions:

(a) y = 3−6x

(b) y = x−3x2

(c) y = 3x
x+a + 4. Find how the shape of the graph for x,y ≥ 0 depends on the value of the

parameter a > 0.
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Exercises for section 1.4

8. (a) Sketch qualitative graphs of the following implicit functions. (b) Find how special points of
these graphs (intercepts, zeros, asymptotes) depend on parameters. (c) If graph contains several
lines find their intersection points. Note, all parameters represent positive numbers.

(a) x+3y2 = 0 on the xy plane

(b) y2 + x2 = 9 on the xy plane

(c) xy = 0 on the xy plane

(d) dN(a−P) = 0 on the NP plane

(e) dN + NP
N+a = 0 on the NP plane

(f) dR(b−R) = cRN
R+a on the RN plane

(g) bR(1− R
k −dR)−aNR = 0 on the RN plane

(h) aN +P(1− eP)+bP = 0 on the NP plane

Additional exercises

9. Perform the indicated operations:

(a) ((x−2y)∗ (y−2x)+2y2)∗ 1
x

(b) a−2b
2p : 4b−2a√

p

10. Solve the system of equations for the specified variables:

(a) find A,B,C in:





rA(1− A
K −AB) = 0

AB−dB−BC = 0
BC− fC = 0

r,K,d, f > 0

11. Find the derivative of f (x):

(a) f (x) = 2x

(b) f (x) =
√

1
x3

(c) f (g) = cos(x2);

(d) f = (cos(x))2;

(e) y = ax∗ ebx a,b > 0

(f) y = x2−5
2x2−3x

(g) y = ax2

bx−c , a,b,c > 0

(h) y = x
1+ x

d
, d > 0

(i) y = xn

xn+an , a > 0

12. Solutions of differential equations
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(a) Show that function N(t) = A ∗ e3t , where A is an arbitrary constant, is a solution of the
differential equation: dN(t)

dt = 3N. For that, compute derivative of this function and substitute
this derivative and the function itself to the equation and show that the left hand side of the
equation equals to the right hand side.

(b) Show, using the same steps that the function N(t) = s(1− et)+Ae−t , where a is an arbitrary
constant and s is a parameters, is a solution of the differential equation dN(t)

dt = s−N

13. Assume that x(t) is an unknown function of t. For f (x) listed below find the following derivatives:
d f
dx and d f

dt .

(a) f (x) = x3

(b) f (x) = e−ax

(c) Find the expression for d f
dt for an arbitrary f (x(t)).

14. Without plotting the function find the following information about their graph: find the y-intercept
and zeros; find horizontal or/and vertical asymptotes (if they exist).

(a) function y(x) given by y = x−4
x2−3x+2

(b) function y(x) given by y = a : b
x3−c a,b,c > 0

15. Sketch graphs of the following functions:

(a) x = 4e−3t

(b) y = x2 +2x−3

(c) y = 2
x+3

(d) y = bx2

x2+a2 +4. Find how the shape of the graph depends on the value of the parameters a > 0
and b > 0.

(e) y = bx2

x3+c3 , Find how the shape of the graph depends on the value of the parameter c > 0 and
b > 0.

(f) f (n) = rn∗ (1− n
k )−h, k 6= 0 find for which values of the parameter h > 0 the graph touches

the n-axis. Tip: draw graph for h = 0 and think about how h affects this graph.

16. Sketch qualitative graphs of the following pairs of implicit functions on the same graph. Find all
intersection points.

(a) aN−P(1+ eP)−bP = 0 and bP− cN = 0 parameters a,b,c,e > 0

(b) rR(1−R/K)− NR
h+R = 0 and NR

h+R −dN = 0 parameters r,K,h,d > 0



Chapter 2

Selected topics of calculus

In this chapter we introduce several new notions on calculus and algebra which are important for our
course.

2.1 Complex numbers

Complex numbers were introduced for the solution of algebraic equations. It turns out that in many cases
we can not find the solution of even very simple quadratic equations. Consider the general quadratic
equation:

λ2 +Bλ+C = 0 (2.1)

The roots of (2.1) are given by the well known ’abc’ formula:

λ12 =
−B±

√
B2−4C

2
=
−B±

√
D

2
(2.2)

where
D = B2−4C (2.3)

What happens with this equation if D < 0? Does the equation have roots in this case?

Complex numbers help to solve such kind of problems. The first step is to consider the equation

λ2 =−1 (2.4)

Let us claim that (2.4) has a solution and denote it in the following way:

λ12 =±i (2.5)

where
i =
√
−1 (2.6)

Here i is the basic complex number which is similar to ′1′ for real numbers. Using it we can denote
solutions of other similar equations. For example if

λ2 =−4, λ =
√
−1∗4 =

√
−1
√

4 = i∗ (±2) =±2i.

23
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Similarly the equation λ2 = −a2, has solutions λ = ±ai. Although we call ai a complex number, it is
quite different from usual real numbers. Using complex numbers ai we cannot count how many books
we have in the library, for example. The only meaning of i is that i2 =−1, and ai is just a designation of
a root of the equation λ2 =−a2.

Now we can solve equation (2.1) for the case D < 0. If D < 0, then
√

D = i
√
−D and

λ12 =
−B± i

√
−D

2
(2.7)

Example. Solve the equation λ2 +2λ+10 = 0

Solution.

λ12 =
−2±

√
4−4∗10
2

=
−2±

√
−36

2
=
−2±6i

2
, (2.8)

or λ1 =−1+3i, λ2 =−1−3i.

We see, that solution of this equation λ1,2 has two parts, one part is just a real number ’-1’, which is the
same for λ1 and λ2 and the other part, is i times another real number ’3’ which has opposite signs for
λ1 and λ2. This is a general form of representation of complex number. Any complex number can be
represented in the form:

z = α+ iβ (2.9)

where α is called the real part of the complex number z, and β is called the imaginary part of z. The
notation for the real part is Rez and for the imaginary part is Imz. In our example Reλ1 =−1; Imλ1 = 3.
and Reλ2 =−1; Imλ2 =−3.

We can work with complex numbers in the same way as with usual real numbers and expressions. The
only thing which we need to remember, is that i2 =−1.

To add two complex numbers we need to add their real and imaginary parts. For example

z1 = 3+10i,z2 =−5+4i, z1 + z2 = (3+10i)+(−5+4i) = 3+10i+−5+4i =−2+14i.

Similarly, multiplication by a real number results in multiplication of the real and imaginary part by this
number

z1 = 3+10i; 10z1 = 10∗ (3+10i) = 30+100i.

Multiplication of two complex numbers is just an exercise in multiplication of two expressions z1 =
3+10i,z2 =−5+4i; z1 ∗ z2 = (3+10i)∗ (−5+4i) = 3∗ (−5)+3∗4i+10i∗ (−5)+10i∗4i =−15+
12i−50i+40i2 =−15−38i−40 (as i2 =−1) =−55−38i.

Similarly

(z1)
2 = (3+10i)2 = 32 +2∗3∗10i+(10i)2 = 9+60i+100i2 = 9+60i−100 =−91+60i.

Now we can check that λ1 =−1+3i is a solution of the equation in example (2.8). In fact: λ2+2λ+10=
(−1+3i)2+2∗ (−1+3i)+10 = (−1)2+2∗ (−1)∗3i+(3i)2−2+6i+10 = 1−6i−9−2+6i+10 =
(1−9−2+10)−6i+6i= 0−0i= 0, i.e. left hand side of this equation after substitution of λ1 =−1+3i
equals zero and thus λ1 =−1+3i is the root of this equation.
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One more definition. The number z2 = a− ib is called the complex conjugate to the number z1 = a+ ib
and is denoted as z̄1 = z2 = a− ib. Complex conjugate numbers have the same real parts, but their
imaginary parts have opposite signs.

Roots of a quadratic equation with negative discriminant D < 0 are complex conjugate to each other. It
follows from the formula (2.7)

λ1 =
−B+ i

√
−D

2
λ2 =

−B− i
√
−D

2
(2.10)

hence:

Reλ1 = Reλ2 =
−B
2

; Imλ1 =

√
−D
2

; Imλ2 =−
√
−D
2

. (2.11)

Finally consider two more basic operations. If z = a+ ib, then, |z| =
√

a2 +b2 is called the absolute
value, or modulus of z. Note, that |z|2 = zz̄, as (a+ ib)∗ (a− ib) = a2− (ib)2 = a2 +b2.

We use this trick to introduce division of two complex numbers

z1

z2
=

z1z̄2

z2z̄2

So, to divide two complex numbers we multiply the numerator and the denominator by a number which
is the complex conjugate to the denominator, and we get the answer in the usual form.

Example

1+3i
1−4i

=
1+3i
1−4i

∗ 1+4i
1+4i

=
(1+3i)(1+4i)

12 +42 =
1+3i+4i+12i2

17
=
−11+7i

17
=
−11
17

+
7

17
i

2.2 Matrices

From a very general point of view a matrix is a representation of data in the form of a rectangular table.
An example of a matrix composed of numbers is given below:

A =

(
1 4 5
2 6 10

)
(2.12)

This matrix A has two rows and three columns. We will call this a matrix of the size 2× 3. In general
matrix size is defined as number o f rows×number o f columns. Even if you did not have matrix algebra
in school, you probably know at least one matrix object, that is a vector. Indeed, a vector is an object
which is characterized by its components: two numbers in two dimensions or three numbers in three
dimensions. In matrix algebra vectors can be represented in two forms: as a column vector, i.e. as n×1
matrix (preferred representation), or as a row vector, i.e. as 1× n matrix. For example a vector V with
the x-component Vx = 2 and the y-component Vy = 1 can be represented a column or as a row vector as:

~V =

(
2
1

)
or ~V =

(
2 1

)

Using matrices we can perform the same operations on large blocks of data simultaneously. For example,
if we need to multiply all 6 numbers of matrix A in (2.12) by 4, we can write it as 4A which will mean:

4A = 4∗
(

1 4 5
2 6 10

)
=

(
4∗1 4∗4 4∗5
4∗2 4∗6 4∗10

)
=

(
4 16 20
8 24 40

)
(2.13)
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This operation is called multiplication of a matrix by a number. For a general 2× 2 matrix this can be
written as:

λ
(

a b
c d

)
=

(
λa λb
λc λd

)

Similarly, addition of matrices is adding the numbers that have the same location. This operation is
defined only for two matrices of the same size:

A+B =

(
1 4 5
2 6 10

)
+

(
2 1 4
1 3 5

)
=

(
1+2 4+1 5+1
2+1 6+3 10+5

)
=

(
3 5 6
3 9 15

)
(2.14)

For general 2×2 matrices it can be written as:
(

a b
c d

)
+

(
x y
z w

)
=

(
a+ x b+ y
c+ z d +w

)
(2.15)

Multiplication of matrices is not so trivial. In general matrix multiplication is defined as the products of
the rows of the first matrix with the columns of the second matrix. Thus, to fund the element in row i and
column j of the resulting matrix we need to multiply the ith row of the first matrix by the jth column of
the second matrix. Thus we can multiply two matrices A∗B only if the number of columns in matrix A
equals the number of rows in matrix B.

For a product of two 2×2 matrices this gives:
(

a b
c d

)(
x y
z w

)
=

(
ax+bz ay+bw
cx+dz cy+dw

)
(2.16)

From this it follows that multiplication of a matrix by a column vector is given by:
(

a b
c d

)(
vx
vy

)
=

(
avx +bvy
cvx +dvy

)
(2.17)

The last equation is useful for representation of linear systems as can be seen from the following example.
Assume we have a system of linear equations:

{
x−2y =−5
2x+ y = 10 (2.18)

we can write the coefficients at x and y in the left hand side as a square matrix:

A =

(
1 −2
2 1

)
.

We also have two numbers in the right hand side which we can write as a column vector:

~V =

(
−5
10

)
.

Now if we write x and y as a column vector:

~X =

(
x
y

)
.
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we can represent system (2.18) using matrix multiplication (2.17) as:

A~X =~V ; or
(

1 −2
2 1

)(
x
y

)
=

(
−5
10

)
(2.19)

Indeed, from (2.17) we get
(

1 −2
2 1

)(
x
y

)
=

(
1∗ x−2∗ y
2∗ x+1∗ y

)
, that proves this result.

Another important matrix operation is the determinant of a square 2x2 matrix, which for the matrix

A =

(
a b
c d

)
is defined as:

det
∣∣∣∣

a b
c d

∣∣∣∣= ad− cb (2.20)

The determinant of a matrix has many important applications in algebra. For example using determinants
it is possible to find solution of system of linear equations (e.g. system (2.18)) in the form of so-called
Cramer’s rule, which was published by Gabriel Cramer as early as in mid-18th century. Cramer’s rule is
briefly formulated in exercise 7 at the end of this chapter.

Now let us consider one of the most important problems in matrix algebra: the eigen value problem.

2.3 Eigenvalues and eigenvectors

Let us start with a definition:

Definition 1 A nonzero vector v and number λ are called an eigen vector and an eigen value of a square
matrix A if they satisfy equation:

Av = λv (2.21)

Eigen vectors are not unique, and it is easy to see that if we multiply it by an arbitrary constant k we get
another eigen vector corresponding to the same eigen value. Indeed by multiplying (2.21) by k we get:

kAv = kλv or A(kv) = λ(kv) (2.22)

therefore, we can say that kv is also an eigen vector of (2.21) corresponding to eigen value λ.

For example, for matrix A =

(
1 2
2 1

)
, number λ = 3 and vector v =

(
1
1

)
are an eigen value and

eigen vector as:

Av =

(
1 2
2 1

)(
1
1

)
=

(
1∗1+2∗1
2∗1+1∗1

)
=

(
3
3

)
= 3

(
1
1

)
= 3v (2.23)

If we multiply v =

(
1
1

)
by any number, e.g. 2, 25, or etc., we will get new eigen vectors v =

(
2
2

)
,

v =

(
25
25

)
of this matrix for λ = 3. You can check it in the same way as we did in (2.23) for a vector

v =

(
1
1

)
.
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Finding eigen values and eigen vectors is one of the most important problems in applied mathematics. It
arises in many biological applications, such as population dynamics, biostatistics, bioinformatics, image
processing and many others. In our course we will apply it for the solution of systems of differential
equations, which we will consider in chapter 4.

Let us consider how to solve the eigen value problem for a 2x2 matrix A =

(
a b
c d

)
. For that we need

to find λ and
(

vx
vy

)
satisfying:

Av =

(
a b
c d

)(
vx
vy

)
= λ

(
vx
vy

)
. (2.24)

We can rewrite it as a system of two equations with three unknowns λ,vx,vy:
{

a∗ vx +b∗ vy = λvx
c∗ vx +d ∗ vy = λvy

(2.25)

If we collect all unknowns at the left hand side we will get the following system:
{

(a−λ)∗ vx +b∗ vy = 0
c∗ vx +(d−λ)∗ vy = 0 or in matrix f orm

(
a−λ b
c d−λ

)(
vx
vy

)
=

(
0
0

)
. (2.26)

This system always has a solution vx = vy = 0, however it is not an eigen vector, as in accordance with
the definition the eigen vector should be nonzero. In order to find non-zero solutions let us multiply the
first equation by d−λ, the second equation by b and subtract them. Multiplication gives:

{
(d−λ)∗ [(a−λ)∗ vx +b∗ vy] = 0
b∗ [c∗ vx +(d−λ)∗ vy] = 0 (2.27)

Subtraction of the equations results in:

(d−λ)∗ (a−λ)∗ vx +(d−λ)∗b∗ vy = 0
−
b∗ c∗ vx +b∗ (d−λ)∗ vy = 0
gives
(d−λ)∗ (a−λ)∗ vx−b∗ c∗ vx +(d−λ)∗b∗ vy−b∗ (d−λ)∗ vy = 0
or

[(d−λ)∗ (a−λ)−b∗ c]∗ vx = 0 (2.28)

as vx 6= 0 we get:
(d−λ)∗ (a−λ)−b∗ c = λ2− (a+d)λ+(ad− cb) = 0 (2.29)

This is a quadratic equation with unknown λ and for each particular coefficients a,b,c,d we can find
two solutions: λ1 and λ2 using the ’abc’ formula. Thus we found that the eigenvalue problem for a
2x2 matrix (2.24) has solutions for the eigen values λ. In general, for a nxn matrix that the eigen value
problem has n solutions for λ.

Equation (2.29) is very important in our course and it has a special name: characteristic equation. In
most of the courses on mathematics this equation, however, is written in a slightly different matrix form.
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To derive it let us recall the definition of the determinant of a matrix given in section 2.2:

det
∣∣∣∣

a b
c d

∣∣∣∣= ad− cb. Similarly the determinant of matrix
(

a−λ b
c d−λ

)
is:

det
∣∣∣∣

a−λ b
c d−λ

∣∣∣∣= (a−λ)(d−λ)−bc (2.30)

which coincides with the left hand side of characteristic equation (2.29) and thus the characteristic equa-
tion can be rewritten as:

det
∣∣∣∣

a−λ b
c d−λ

∣∣∣∣= 0 (2.31)

Let us use this approach to find the eigen values of matrix A from example (2.23). We get the following
characteristic equation:

Det
∣∣∣∣

1−λ 2
2 1−λ

∣∣∣∣= (1−λ)(1−λ)−2∗2

= 1−λ−λ+λ2−4 = λ2−2λ−3 = 0

From the ’abc’ formula:

λ1,2 =
2±
√

4+12
2

=
2±
√

16
2

; λ1 = 3 λ2 =−1

therefore we found two eigen values λ1 = 3 and λ2 =−1.

Now, let us find eigen vectors. For that let us substitute the found eigen values to the original equation
(2.26) and solve it for vx and vy. Let us do it first for a particular example (2.23) for which we have found
eigen values λ1 = 3 and λ2 =−1. For eigen vector corresponding to eigen value λ1 = 3 we obtain:

{
(1−3)vx +2vy = 0
2vx +(1−3)vy = 0 or

{
−2vx +2vy = 0
2vx−2vy = 0 or

{
−2vx =−2vy
2vx = 2vy

(2.32)

Both equations give the same solution vx = vy. This means that if vy = 1, then vx = 1 and a pair
(

1
1

)

satisfies the system and thus gives an eigen vector of problem (2.23). We can also use any other value

for vy. For example, if we use vy = 2 then vx will be vx = 2 and we get another eigen vector
(

2
2

)
, etc.

In general any vx = k, and vy = k give an eigen vector. We can express it by the following formula:
(

vx
vy

)
= k
(

1
1

)
(2.33)

where k is an arbitrary number. Formula (2.33) gives all possible solutions of eq.(2.32). It also illustrates
a general property of eigen vectors which we have proven in (2.22), that if we multiply an eigen vector by
an arbitrary number k will get also an eigen vector of our matrix. Using this property we can formulate
an easy way to write a formula for all eigen vectors. For that we take any found eigen vector and
multiply it by an arbitrary number k. Note, that if for problem (2.32) we use another found eigen vector(

2
2

)
, we can write an answer as

(
vx
vy

)
= k
(

2
2

)
. At the first glance this formula is different from

(2.33). However, it is easy to see that both formulas give the same result: this is because k in (2.33)
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is an arbitrary constant and any vector given by the formula (2.33) with
(

1
1

)
can be obtained using

the formula k
(

2
2

)
for another value of k. Thus the answer to our problem: to find eigen vectors of

matrix (2.23) for eigen value λ1 = 3, can be written as
(

vx
vy

)
=

(
1
1

)
, or

(
vx
vy

)
=

(
2
2

)
, or etc.

These vectors give particular solutions of this problem. We can also write a formula for all solutions

as
(

vx
vy

)
= k

(
1
1

)
, or

(
vx
vy

)
= k

(
2
2

)
, or etc. As we discussed above all these answers will be

correct and equivalent.

Similarly we find the eigen vector corresponding to the other eigen value λ2 =−1:

1. Substitution:
{

(1− (−1))vx +2vy = 0
2vx +(1− (−1))vy = 0 or

{
2vx +2vy = 0
2vx +2vy = 0 or

{
2vx =−2vy
2vx =−2vy

(2.34)

2. Relation between vx and vy:
vx =−vy

3. Eigen vector: use e.g. vy = 1, thus vx =−1

v =

(
−1
1

)

The general form is v = k
(
−1
1

)
, where k is an arbitrary number.

Note, that in both cases in order to find eigen vectors we could use the first equation only (see equations
(2.32) and (2.34)), and the second equation in both cases did not provide us any new information. It
is not a coincidence, and this property is the basis for the following express method for finding eigen
vectors:

Express method for finding eigen vectors

Let us derive a formula for finding the eigen vectors of a general system (2.25). We assume that we have
found eigen values λ1 and λ2 from the characteristic equation (2.31). To find the corresponding eigen
vectors we need to substitute the found eigen values into the matrix and solve the following system of
linear equations (2.26): {

(a−λ1)vx +bvy = 0
cvx +(d−λ1)vy = 0 (2.35)

It is easy to check that if we use for vx and vy the values vx =−b and vy = a−λ1 it gives the solution of
the first equation:

(a−λ1)vx +bvy = (a−λ1)(−b)+b(a−λ1) =−b(a−λ1)+b(a−λ1) = 0
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If we substitute these expressions into the second equation we get:

cvx +(d−λ1)vy =−cb+(d−λ1)(a−λ1) = 0

To prove that this expression is also zero, note that (d−λ1)(a−λ1)− cb is zero in accordance with the
characteristic equation (2.29). Therefore vx = −b and vy = a−λ1 give a solution of (2.35) which is an
eigen vector corresponding to the eigen value λ1. Similarly we find the eigen vector corresponding to
the the eigen value λ2.

However, this approach does not work if in (2.26) both b = 0 and a−λ = 0. In this case we can use the
second equation cvx +(d−λ1)vy = 0 and find an eigen vector as vx = d−λ1 and vy =−c. Indeed:

cvx +(d−λ1)vy = c(d−λ1)+(d−λ1)(−c) = 0

As in the previous case it is easy to show that this vector satisfies the other (first) equation as: (a−
λ1)vx +bvy = (a−λ1)(d−λ1)+b(−c) = 0 due to (2.35).

The final formulas are:

v1 =

(
v1x
v1y

)
=

(
−b

a−λ1

)
v2 =

(
v2x
v2y

)
=

(
−b

a−λ2

)
(2.36)

or

v1 =

(
v1x
v1y

)
=

(
d−λ1
−c

)
v2 =

(
v2x
v2y

)
=

(
d−λ2
−c

)
(2.37)

where a,b are the elements of the matrix A =

(
a b
c d

)
.

Either (2.36) or (2.37) can be used to find eigen vectors. (Both answers will be valid.) If, however, one
of the formulas gives a zero eigen vector, we should use the other one to obtain a non-zero vector.

Let us apply these formulas for the system (2.23) with matrix A =

(
1 2
2 1

)
and eigen values λ1 =

3;λ2 =−1. The eigen vectors can be found from (2.36) as:

λ1 = 3;
(

v1x
v1y

)
=

(
−2

1− (3)

)
=

(
−2
−2

)
λ2 =−1;

(
v2x
v2y

)
=

(
−2

1− (−1)

)
) =

(
−2
2

)
(2.38)

and from (2.37) as:

λ1 = 3;
(

v1x
v1y

)
=

(
1−3
−2)

)
=

(
−2
−2

)
λ2 =−1;

(
v2x
v2y

)
=

(
1− (−1)
−2

)
) =

(
2
−2

)
(2.39)

We see that the vectors differ from the vectors found earlier, but it is easy to find that they are equiva-

lent. For example, if we multiply the first vector by −1
2 we find −1

2

(
−2
−2

)
=

(
1
1

)
, thus the same

vector which we found earlier in (2.33). We also see that formulas (2.38) and (2.39) give equivalent
result. Indeed, first vectors obtained form (2.38) and (2.39) are the same. For second vectors note that:

−1
(
−2
2

)
=

(
2
−2

)
.
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2.4 Functions of two variables

A function of two variables f (x,y) describes the rule of finding the value of function f , if we know the
values of the variables x and y. For example, the area of a right-angled triangle with the sides x, and y is
given by the following function of two variables: f (x,y) = xy/2. Another example is the rate of growth
of a prey population in a typical ecological predator-prey model: f (x,y) = 3x−3x2−1.5xy, where x is
the prey population and y is the predator population. The graph of the function of one variable y = f (x)
is a line on the Oxy-plane. To sketch the graph of the function of two variables f (x,y), we must use a
three dimensional space (x,y,z): the Oxy-plane for the values of the independent ’ input’ variables x,y,
and the third axis z for the function ’output’ value z = f (x,y). In such a representation the graph will be
a surface in a three dimensional space. Fig.2.1 shows a graph of the function f (x,y) = 3x−3x2−1.5xy
plotted by a computer.

Figure 2.1:

Derivatives. The next step is the definition of the derivative of f (x,y). The main idea of finding the
derivative of f (x,y) is to fix one variable at a constant value, say x = x∗. After that we will get a function
of one variable y only ( f (x∗,y)). Now, we can find the derivative of f (x∗,y), as the usual derivative of a
function of one variable y. For example, f (x,y) = 3x− 3x2− 1.5xy. Let us fix x = x∗ = 2. We get the
following function of one variable: f (2,y) = 3∗2−3∗22−1.5∗2y =−6−3y. We can easily find the
derivative now: d f (2,y)/dy = d(−6−3y)/dy =−3.

This type of derivative is called the partial derivative of f (x,y) with respect to y at x = 2. We denote it
as

∂ f/∂y|x=2 =−3

We can find such a derivative at x = 3, or at any other value of x. In fact for an arbitrary x = x∗,
f (x∗,y) = 3∗ x∗−3∗ x∗2−1.5∗ x∗ ∗ y, and

∂ f/∂y|x=x∗ = ∂(3∗ x∗−3∗ x∗2−1.5∗ x∗ ∗ y)/∂y = 0−0−1.5∗ x∗

Here ∂(3∗x∗)/∂y = 0 as we replaced x by a constant x∗ and the derivative of a constant is zero. Similarly,
∂(−3∗ x∗2)/∂y = 0, and ∂(−1.5∗ x∗ ∗ y)/∂y =−1.5∗ x∗, as −1.5∗ x∗ is a constant and the derivative of
(ky)′ = k. It is generally accepted to make all these differentiations without explicitly replacing x by x∗.
We just should keep in mind, that for such a differentiation we treat x as a constant. Thus, to find the
derivative of f with respect to y we just write:

∂ f/∂y = ∂(3x−3x2−1.5xy)/∂y =−1.5x.
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keeping in mind that x is considered as a constant and not a variable during this differentiation.

This expression is called the partial derivative of f (x,y) with respect to y and is denoted as ∂ f/∂y.

Similarly, we can introduce a partial derivative of f with respect to x: ∂ f/∂x. To compute it, we fix y
(treat y as a constant) and make the usual differentiations with respect to x. In our example it gives:

∂ f/∂x = ∂(3x−3x2−1.5xy)/∂x = 3−3∗2x−1.5y

Here ∂(3x)/∂x = 3, ∂(−3x2)/∂x =−3∗2x, and ∂(−1.5xy)/∂x =−1.5y as y is fixed.

Example. Find ∂z/∂x and ∂z/∂y for z = y3 sinx

Solution ∂z/∂x= y3 cosx, as for ∂/∂x we fix y, and ∂(sinx)/∂x= cosx. Similarly, ∂z/∂y= ∂(y3 sinx)/∂y=
3y2 sinx, as x and hence sinx is treated as a constant.

y

x

y=y*

x=x*    

x*     

y*

Figure 2.2:

The geometrical representation of a partial derivative is clear from fig.2.2. To compute ∂ f/∂x we fix
y, i.e. assume that y has some value y = y∗. The condition y = y∗ geometrically gives a horizontal line
on the Oxy plane fig.2.2a, or a line parallel to the x-axis. In 3D this line gives a curve on the 3D surface
in graph fig.2.2b, which is a 1D function. The partial derivative with respect to x for this particular y∗

will give us the slope of the tangent line to this 1D function. Thus (see fig.2.2) ∂ f/∂x gives the slope of
the tangent line in the direction of the x-axis or the rate of change of f (x,y) in the x direction. Similarly,
computing ∂ f/∂y we fix x, i.e. assume that x has some value x = x∗. It gives us a vertical line on the
Oxy plane fig.2.2a, or a line parallel to the y-axis. Thus ∂ f/∂y gives the slope of the tangent line in the
direction of the y-axis, or the rate of change of f (x,y) in the y direction. If we consider f (x,y) as a
mountain ∂ f/∂x gives the slope of the mountain if we climb in the x-direction and ∂ f/∂y gives the slope
of the mountain if we climb in the y-direction.

Note, that in general at each point on a surface we can draw a tangent line in any direction, and partial
derivatives ∂ f/∂x and ∂ f/∂y give the slopes of two of these possible tangent lines. Note, that the slope
of a tangent line any direction can be obtained as a combination of these two slopes.

Linear approximation Let us derive a formula for approximating a functions of two variables f (x,y).
Let us assume that we know f (x,y) and its partial derivatives at some point x∗,y∗ and that we want to
find the value of a function at the close point x,y (fig.2.3). Let us move to the point x,y in two steps.
Let us first move from the point x∗,y∗ to the point x,y∗, i.e. in the x-direction, and then from x,y∗ to
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(x,y)

x

y

(x ,y )         
(x,y )

* *
*

∆

∆

f

f

1

2

Figure 2.3:

x,y, i.e. in the y-direction. Let us apply the formula for approximation of a function of one variable in
formulation (1.10) at each part of this motion. Because on the first part we move along the x direction
the change of the function (∆ f1) will be given as the product of the rate of change of the function in the
x direction (∂ f/∂x) times the distance between the points (x− x∗):

∆ f1 = f (x,y∗)− f (x∗,y∗) = (∂ f/∂x)(x− x∗) (2.40)

Similarly, on the second part of our motion, we move along the y-axis, and the change of the function
here (∆ f2) will be given as the product of the rate of change of the function in the y direction (∂ f/∂y)
times the distance between the points (y− y∗):

∆ f2 = f (x,y)− f (x,y∗) = (∂ f/∂y)(y− y∗) (2.41)

If we add equations (2.40) and (2.41) and solve it for f (x,y) we find the following formula which gives
the approximation for a function of two variables:

f (x,y)≈ f (x∗,y∗)+(∂ f/∂x)(x− x∗)+(∂ f/∂y)(y− y∗) (2.42)

This expression is called a linear approximation, as the independent variables x,y are in the first power
only, we do not have terms x2,y2, or xy, or etc.

Example Find the linear approximation for the function ex+2y at the point x = 0,y = 0

Solution. We use the formula (2.42) with f (x,y) = ex+2y and x = 0,y = 0.

f (x,y) = e(0+0) = 1;

∂ f/∂x = ex+2y; at x = 0,y = 0, ∂ f/∂x = e0+2∗0 = 1

∂ f/∂y = ∂(ex+2y)/∂y = ex+2y ∗∂(x+2y)/∂y = 2ex+2y, at x = 0,y = 0, ∂ f/∂y = 2e0+2∗0 = 2

Finally, ex+2y ≈ 1+1∗ x+2∗ y.

At x = 0.1,y = 0.1 the approximate formula gives: ex+2y ≈ 1+1∗0.1+2∗0.1 = 1.3. The exact value
of ex+2y = e0.3 = 1.3498
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2.5 Exercises

Exercises for section 2.1

1. Find all roots of the given equations

(a) x2 +4x+5 = 0

(b) x2−5x+6 = 0

Exercises for section 2.2

2. Write the following linear systems in a matrix form A~X =~V . Find the determinant of matrix A.

(a)
{

2x−4y = 3
x+ y = 1

(b)
{

ax+by = 0
cx+dy =−b

Exercises for section 2.3

3. Find eigen values and eigen vectors of the following matrices:

(a)
(
−2 1
1 −2

)

(b)
(

1 4
1 1

)

(c)
(
−1 5
−1 3

)

Exercises for section 2.4

4. Find partial derivatives of these functions. After fining derivatives evaluate their value at the given
point (if asked).

(a) ∂z
∂x and ∂z

∂y for z(x,y) = x2 + y2−4; at x = 1;y = 2

(b) ∂z
∂x for z(x,y) = x(25− x2− y2); at x = 3;y = 4

(c) ∂z
∂N and ∂z

∂R for z(N,R) = N(bR−d) at R = 0,N = 0; and at R = d
b ,N = 1 :

(d) ∂z
∂P and ∂z

∂M for z(P,M) = a
1+P −bM.

(e) ∂z
∂N and ∂z

∂P for z(N,P) = aN− eN2−bNP

(f) ∂z
∂M and ∂z

∂A for z(M,A) = ML−δA− vMA
h+A

(g) ∂z
∂P1

and ∂z
∂P2

for z(P1,P2) =
−aP2

h+P2
1+2P2

(h) ∂z
∂N and ∂z

∂T for z(N,T ) = b2N2T
1+cN+bT N2
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Additional Exercises

5. Perform the indicated operations:

(a)
√

32−90

(b) (−1+2i)+(4+7i)

(c) (4+5i)∗ (7+2i)

(d) 1
i

6. Find all roots of the given equations

(a) x2 +121 = 0

(b) x2 +2x+3 = 0

7. Cramer’s rule on an example. Cramer’s rule for system of two linear equations:
{

ax+by = E
cx+dy = F

allows us to find solutions from determinants of matrices. First we need to find a determinant of
the main matrix A

detA = det
∣∣∣∣

a b
c d

∣∣∣∣ .

Then we need to find the determinant of a matrix formed by replacing the x-column values of the

matrix A with the answer-column values
(

E
F

)
as detDx = det

∣∣∣∣
E b
F d

∣∣∣∣ and similarly for the

y-column: detDy = det
∣∣∣∣

a E
c F

∣∣∣∣. The solutions of the system will be given by the ratios of these

determinants as:
x =

detDx

detA
; y =

detDy

detA
.

• Find solutions of the following system using the Cramer’s rule:
{

x+2y = 5
2x+ y = 4 (2.43)

• Find also solution of (2.43) by usual method. Show that Cramer’s rule gives a correct result.

8. Find eigen values and eigen vectors of the following matrices:

(a)
(
−1 6
2 −2

)

(b)
(

2 1
7 −4

)

9. Find a linear approximation for the function at the given point.

(a) f (x,y) = x2 + y2; at x = 1,y = 1



Chapter 3

Differential equations of one variable

Differential equations are equations that contain a derivative of an unknown function. As we know
derivative gives a velocity of a process and differential equations occur when we describe various pro-
cesses via their velocities. Differential equations are widely used for modeling in a variety of disciplines:
in mathematics, physics, chemistry, economics, engineering, medicine, life sciences, etc. Development
of methods of study of differential equations is the main subject of this course.

In this chapter we will introduce differential equations, give first definitions, show how to solve simple
differential equations analytically and consider a few examples. Then we will develop qualitative meth-
ods for the analysis of differential equations of one variable and will apply them for biological models.

3.1 Differential equations of one variable and their solutions

3.1.1 Definitions

Let us construct a first differential equation. Consider a motion of a car with a contact velocity, for
example v = 10m/sec. If we denote the distance traveled by the car at time t as l(t) we can write
velocity = v = dl

dt , as the velocity is the derivative of the distance with respect to time. Thus we can write
the following differential equations for this process:

dl/dt = 10 (3.1)

If the car travels with an acceleration, then the velocity will linearly increase with time. If we assume
that the acceleration is a = 1.2m/sec2, then the velocity in the course of time will be given by v = 1.2t
and we get a differential equation as:

dl/dt = 1.2t (3.2)

Let us consider a biological example. If N(t) is the population size of a species at time t, then the rate of
change of the population size is:

dN/dt = births−deaths (3.3)

37
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Let us assume that the birth and the death terms are proportional to N. This assumption is quite rea-
sonable, as it means, that if, for example, we know the growth rate of a population of some insects on
one tree, then the total growth rate of the whole population of insects in the forest will be proportional
to the total number of trees. Thus each term in equation (3.3) will be proportional to N and we get the
following famous ’Malthus’ equation for population dynamics:

dN/dt = (α−β)N = kN (3.4)

where α and β are the rate constants for the birth and death processes, and we see that k > 0 if α > β,
and k < 0, if α < β.

Another model assumes that there is a maximum population size K (called the carrying capacity) and
that the the rate of growth of population depends on how close the population is to this maximum size.
This yields the following differential equations:

dN/dt = k(K−N) (3.5)

Now note, that in mathematical sense equations of the type (3.2) can be written as

dx
dt

= f (t) (3.6)

as the variable t with respect to which we differentiate function x is also present in the right hand side of
our equation.

Alternatively the equations of the type (3.4) and (3.5) can be written as:

dx
dt

= f (x) (3.7)

as here the variable t is not present at the right hand side and we have only the unknown function x (for
eqns(3.4),(3.5) N) there.

The latter equations are the most important for us in this course and they have a special name an ’au-
tonomous differential equations’:

Definition 2 Equation
dx
dt

= f (x) (3.8)

is called an autonomous differential equation

Example
dx
dt = 2x− tan(x) autonomous

dx
dt = 3sin(x− t) non−autonomous

dx
dt = arcsin(x) autonomous

Before we find how to solve differential equations, let us discuss from a very general point of view what
kind of solutions can we expect here. If we assume that a differential equation describes how the size of
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a population will change in time, then we may think about two types of problems. The first one it to find
this size for a particular population at each time moment. For that we obviously would need to know the
initial size of a population. We can also ask a more general question: to find the population size for an
arbitrary initial size. This solution will be called the general solution of a differential equation. Because
the general solution contains information on solutions for arbitrary initial conditions, it normally depends
on an arbitrary constant. The differential equation with given initial condition is called an initial value
problem:

Definition 3 The problem dx
dt = f (x),x(0) = x∗ is called the initial value problem; Its solution is called

the orbit or trajectory.

The initial value problem for most f (x) has a unique solution.

Now let us consider how we can solve differential equation.

3.1.2 Solution of a differential equation

e can easily solve an equations of type (3.6) using the method of separation of variables. The main idea
of this method is to think about the derivative of an unknown function x in dx

dt = f (t) as a fraction dx
over dt. If we multiply both sides of this equation by dt we will get:

dx = f (t)dt

If we integrate both sides of this equation and get:∫
dx =

∫
f (t)dt

or
x = F(t)+C

(3.9)

where F(t) is an anti-derivative of f and C an arbitrary constant. This is the general solution of dif-
ferential equation (3.6). We see that this solution contains an arbitrary constant, as expected from the
discussion in the previous section.

Let us apply this method to a few examples.

For the simplest differential equation dx
dt = 0 we get:

dx
dt = 0
or
dx = 0∗dt
or∫

dx =
∫

0dt
or
x =C

(3.10)

Therefore, the solution of this equation is x equals any constant C.
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For the equation of motion of a car with a velocity 10m/sec (3.1) we get:

dx
dt = 10
or∫

dx =
∫

10dt
or
x = 10t +C

(3.11)

Thus this solution shows us the position of a car as a function of time t, and the arbitrary constant C here
accounts for the initial position of the car.

Finally, for the motion from the rest with an acceleration a = 1.2m/sec2 (3.2) we get:

dx
dt = 1.2t
or∫

dx =
∫

1.2tdt
or
x = 1.2 t2

2 +C

(3.12)

We obtained a formula which is well known to you from your school physics and C here also accounts
for the initial position of a car.

It turns out that we can apply the method of separation of variables also for an autonomous equation (3.8)
(dx

dt = f (x)). However, here we will need to separate variables as dx
f (x) = dt and as a result we will not

usually get the explicit formula for x(t). However, in many cases we can do it after some transformations.

Let us solve equation for population dynamics (3.4).

dN
dt = kN

or∫ dN
N =

∫
kdt

or
ln(N) = kt +C

(3.13)

To find N note that equation ln(x) = a has a solution x = ea, thus we find N = ekt+C = eC ∗ ekt and if we
denote eC = A we will get:

N(t) = Aekt , (3.14)

where A is an arbitrary constant.

Let us apply it for the following initial value problem with k = 4 and the initial population size of 10:

dN/dt = 4N N(0) = 10 (3.15)

The general solution here is given by N = A ∗ e4t . To find the solution of the initial value problem we
note that at t = 0 the population size was N(0) = 10, i.e. we can write: N(0) = Ae4∗0 = 10, or we find
that A = 10. Hence, we have the following solution of the initial value problem (3.15): N = 10e4t .

Similarly, we can solve the general initial value problem (3.4) for an arbitrary initial size of N(0) and
find:

N = N(0)ekt (3.16)
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thus A here gives the initial size of the population.

Finally let us solve equation (3.5), for specific parameter values K = 20,k = 4:

dN
dt = 4(20−N) =−4(N−20)

or∫ dN
N−20 =−∫

4dt
or
ln(N−20) =−4t +C
or
N−20 = Ae−4t

or
N = 20+Ae−4t

(3.17)

This is a general solution. Let us find a particular solution, corresponding to the initial size of the
population N(0) = 10, for example. For that we find: N(0) = 20+Ae−4∗0 = 10, or A = 10−20 =−10,
thus the population dynamics in the course of time will be given: N = 20−10e−4t .

The solutions of equation (3.4) and equation (3.5) are shown in fig.3.1.

N

t

10 10

20

t

N

a b

Figure 3.1: a- Size of population obtained form the solution of the initial values problem (3.4) with
k = 4,N(0) = 10; b-the same for equation (3.5) with K = 20,k = 4,N(0) = 10;

We see that the size of the population for eq.(3.4) goes to infinity (fig.3.1a). Quantitatively the size
of population increases in e ≈ 2.73 times each 1

4 = 0.25 seconds. Indeed, from the particular solution
N = 10e4t we find N(0) = 10; N(0.25) = 10 ∗ e; N(0.5) = 10 ∗ e2; etc. In general, for arbitrary k in
(3.4) this characteristic time of change is given by τ = 1

k , which follows from equation (3.16). For
equation (3.5), the population approaches its carrying capacity value of K = 20 (see fig.3.1b) and the
characteristic time is also determined by the value of k in the following sense: the difference between
the current population size and its stationary value decreases in e times over the time period τ = 1

4 . This
follows from solution (3.17), which gives for this difference N−20 = Ae−4t . Similar expression for an
arbitrary value of k is given by N−K = Ae−kt , which gives for the characteristic time τ = 1

k .

This concludes our analytical study of differential equations. In the next chapter we will formulate
another method of analysis of differential equations that does not require direct integration of these
equations.
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3.2 Qualitative methods of analysis of differential equations of one
variable

In this section we will consider a general non-linear differential equation dx
dt = f (x) and develop an

effective method for qualitative analysis of this equation without finding solutions analytically. In the
next chapters this method will be extended to the systems of two differential equations.

3.2.1 Phase portrait

Let us start with equation (3.18) which we considered in section 3.1.

dN/dt = kN (3.18)

We found that N = 10e4t is a solution for this equation for k = 4 and the initial population size of
N(0) = 10 (see (3.15)). This solution was represented graphically in fig.3.1.

a b cN

t

Figure 3.2: Three solutions of equation (3.18) together with tangent lines for these solutions at N = N∗.

If the initial size of the population was different, for example N(0) = 5, or N(0) = 3, N(0) = 0.1 etc., we
get other solutions of equation (3.18) and if we represent these solutions graphically we will obtain the
following curves (a,b,c) shown in fig3.2. Let us analyze them. An important characteristic of any line is
its slope. It turns out that we can easily find the slope for the solutions of (3.18): slope = dN/dt = 4N.
We see that the slope depends only on N (the size of the population) and does not depend on other factors,
for example on the initial conditions. For example, if N = 3 the slope of the line representing solution at
point N = 3 is 4*3=12 for any initial condition. Geometrically this means if we graph several solutions
(as in fig3.2) and determine slopes of these functions for given N (at points of intersection of the dotted
line N = N∗ with the solution curves) we will find that all slopes are the same (slope = 4∗N∗).

We can use this information and represent a qualitative picture of solutions of (3.18) using only one
N-axis. For that let us denote the slope of the solution on the N-axis for each value of N (see numbers
4,8,12,16, etc.). We see, however, that this is not very helpful for representation of the solution of our
equation. To improve it let us think about biological interpretation of the slope of the curve in fig3.2.

N’=         4         8        12         16        20

1        2          3            4          5 N

The slope of the curve gives us the rate of change of the function and because fig3.2 shows how the size
of population depends on time, the slope values (represented above the N-axis) show the growth rate
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of population at given N. The most important qualitative aspect of the dynamics here is the gowth of
population. We can represent it in the following qualitative way:

N

i.e. we show the growth of the population by an arrow which is directed to the right. Of course, this is
not a complete description of our system, but it gives a good idea about the behavior of our system. It
shows that if we start at some initial value of N∗, then N will grow and the size of the population will be
continuously increasing. Note that to obtain this result we have only used the direction of the arrows in
the figure.

As we will see in the next section, such representation can be easily obtained for any autonomous differ-
ential equation (dx

dt = f (x)) from the graph of the function f (x) at the right hand size. Such representation
is called the phase portrait:

Definition 4 The collection of all possible orbits of a differential equation together with the direction
arrows is called the phase portrait.

3.2.2 Equilibria, stability, global plan

Let us consider two differential equations that arise in population ecology:

dx/dt = 4x (3.19)

and
dx/dt = 240−0.01x (3.20)

Let us sketch phase portraits for (3.19) and (3.20). We can do it without finding a solution. In general,

x’

x

x’>0x’<0
x’

x

a b

f(x)
f(x)

Figure 3.3:

to sketch a phase portrait of an equation (dx
dt = f (x)) we need to draw → or ← arrows on the x-axis.

The→ arrow means growth of x, i.e. dx
dt > 0. The← arrow means decreasing of x, or dx

dt < 0. Because
dx
dt = f (x) we will graph function f (x) and then assign→ to that regions where the graph is above the
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x-axis and← to that regions where the graph is below the x-axis. For equation (3.19) dx/dt = 4x, the
graph of f (x) = 4x is shown at the top panel of fig.3.3a and we draw the right arrow→ for x > 0 , and
the left arrow← for x < 0 (fig.3.3a bottom).

The interesting point here is x = 0. Here dx/dt = 4x = 0, thus the rate of change of x here is zero and
we cannot assign any direction for the arrow at this point. However, the dynamics of our system here
is trivial: x do not change in the course of time, or x(t) = 0 for all t. This means, that if the initial size
of the population was zero, it will be zero forever. Such points of a phase portrait are called equilibria.
They occur at points where the rate of change is zero (dx

dt = 0) For equation (dx
dt = f (x)) equilibria occur

if f (x) = 0, which is also used as a definition of an equilibrium.

Definition 5 A point x∗ is called an equilibrium point of dx/dt = f (x), if f (x∗) = 0

Finally the phase portrait of eq.(3.19) in fig.3.3a gives the following dynamics of x: if the initial value
of x is to the right or to the left left of the equilibrium point x = 0, it will go to plus or minus infinity
respectively.

Let us study equation (3.20). Again, our plan is: f (x) graph→ phase portrait (fig.3.3b). Here we have
an equilibrium point x = 24000 which is the root of the function 240−0.01x, and the arrows (flow) for
this case are shown in fig.3.3b. So, the dynamics of solutions of our equation will be as in the following
figure:

x

x

t
start a start b

start a

start b

equilibrium
equilibrium

Figure 3.4:

i.e. for any initial condition, x will eventually approach the equilibrium point.

If we compare the equilibria of equations (3.19) and (3.20), we can see that they are different. The
variable x diverges from the equilibrium point of equation (3.19). Such equilibrium points are called
non-stable equilibria. On the contrary, the variable x converges to the equilibrium point of equation
(3.20). Such equilibria points of are called stable equilibria or attractors.

Now we can formulate a general plan for finding the phase portrait of dx/dt = f (x).

Global plan.

1. Sketch the graph of f (x).

2. Draw the phase portrait. For that transform the points where f (x) = 0 to equilibria points, the
regions where f (x)> 0 to right headed arrows (→), and the regions where f (x)< 0 to left headed
arrows (←). This gives the overall phase portrait.

Let us apply it to the logistic equation for population growth

dn/dt = rn(1−n/k) n≥ 0 (3.21)
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This equation describes growth of a population in a medium with limited resources. We can study (3.21)
for arbitrary values of parameters r,k. However for simplicity let us fix r = 2 and k = 3. The equation
becomes

dn/dt = 2n(1−n/3) = (2/3)∗n∗ (3−n) (3.22)

Let us find the phase portrait and the dynamics of the solutions of (3.22). First we use the global plan.

1. The right hand side of our equation is (2/3)∗n∗(3−n) = 2n−(2/3)n2. The graph of this function
is a parabola, opened below with the roots n = 0;n = 3.

n

n

t

t

n

a
b

c

f(n)

A B

nk

Figure 3.5:

2. The construction of the phase portrait is clear from fig.3.5a.

The dynamics of the system for different initial conditions is shown in fig. 3.5b, for an initial size of
the population 0 < n < 3, and in fig.3.5c for n > 3. We see that in the course of time the size of the
population becomes n = 3, i.e. the stable equilibrium point n = 3 is the only attractor of our system.

Sometimes, differential equations have several stable equilibria (attractors). For example, the model for
the spruce bud-worm population (3.23) has the following phase portrait (fig.3.6).

du/dt = f (u) (3.23)

f(u)

u

u

u1 u2 u3

A2A1

Figure 3.6:

We see that there are two attractors: A1 and A2 which correspond to bud-worm populations of different
size. We see that if the initial size of the population is 0 < u0 < u2, then the population eventually
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reaches A1; if u2 < u0 < ∞, then population eventually reaches A2. These intervals are called basins of
attraction.

Definition 6 The basin of attraction of a stable equilibrium point x∗ is the set of values of x such that, if
x is initially somewhere in that set, it will subsequently move to the equilibrium point x∗.

In the case of fig3.6, the basin of attraction of the equilibrium u1 (A1) is the interval 0 < u0 < u2; the
basin of attraction of the equilibrium u3 (A2) is the interval u2 < u0 < ∞. It is very important to know
basins of attraction of a system in order to predict its behavior.

3.3 Systems with parameters. Bifurcations.

One of the aims of modeling in biology is to predict the behavior of a system for different conditions. In
that case we differential equations will contain parameters. Let us consider two examples. The first is a
general linear equation with one parameter k

dn/dt = k ∗n (3.24)

If we draw the graph of the right hand side function y = kn for different values of the parameter k we
find that we can have two possibilities depending on the sign of the parameter k (fig.3.7): a non-stable
equilibrium point at n = 0 for k > 0 (fig.3.7a) and a stable equilibrium point at n = 0 for k < 0 (fig.3.7b).

a b

n n

y y

y=kn (k>0) y=kn (k<0)

Figure 3.7:

Another example of an equation with parameters is the logistic equation for population growth (3.21).
This equation depends on two parameters r and k, where r accounts for the growth rate and k accounts
for the carrying capacity. Let us consider a slight modification of equation (3.21) for a population which
is subject to harvesting at a constant rate h:

dn/dt = r ∗n∗ (1−n/k)−h (3.25)
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where h is the harvesting rate (an extra parameter).

Let us fix the parameters r = 2 and k = 3 (the same values as in equation (3.22)), and study only the
effect of varying the harvesting parameter h on, the dynamics of the population.

dn/dt = 2∗n∗ (1−n/3)−h (3.26)

When h = 0 equation (3.26) coincides with equation (3.22) which was studied in fig.3.5. Now assume
that the harvesting h is not zero. Let us plot graphs of 2 ∗ n ∗ (1− n/3)− h for h = 0;h = 0.8;h = 1.6
(fig.3.8a). The phase portraits for h= 0.0;h= 0.8;h= 1.6 are shown in fig3.8b. We see that at h= 0.8 the

n

f(n)

a

h=0
h=0.8
h=1.6

f(n)

n

b c

h=1.6

h=0.8

h=0.0

Figure 3.8:

behavior of the system is qualitatively similar to the behavior of the system without harvesting (h = 0.0):
the population eventually approaches the stable non-zero equilibrium. However the final size of the
population in this case is slightly smaller than for the population without harvesting (fig.3.5a) At h = 1.6
the situation is different. We do not have a stable and non-stable equilibrium anymore. The flow is
always directed to the left and the size of the population decreases. In this simple model this means the
extinction of the population. The important question here is, what is the maximal possible harvesting rate
at which the population still survives. From the previous analysis it is clear that the critical harvesting is
reached when the parabola 2∗n∗(1−n/3)−h touches the n-axis (fig.3.8c). To find this critical value we
note, that h just shifts the parabola 2n(1−n/3) downward. Therefore, the situation of (fig.3.8c) occurs,
when the shift equals the maximum of the parabola 2∗n∗ (1−n/3). To find the maximal value we find
a point where the derivative d f/dn = 0

d f/dn = 2/3(3−n)− (2/3)∗n∗3 = 2−4n/3 = 0
nmax = 3/2; f (nmax) = (2/3)∗ (3/2)∗ (3−3/2) = 3/2 (3.27)

So the maximal value of (2/3)∗n∗ (3−n) equals 3/2 and therefore the maximal harvesting is h = 3/2

If h > 3/2 there are no equilibria and the population will go extinct. If h < 3/2 there is a stable and non-
stable equilibrium and the population will go to the stable equilibrium. At h = 3/2 we are at a boundary
between these two qualitatively different cases. Such a qualitative change in system behavior is called a
bifurcation. Bifurcations are studied in a special section of mathematics: theory of dynamical systems.
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3.4 Exercises

Exercises for section 3.1

1. Assume that a population grows in accordance with the following equation:

dn
dt

= 1.5n

If the initial size of the population was n(0) = 30, find what will be size at time t = 4. Find at what
time the population will double its initial size.

2. A bacterial population doubles its size each 20 minutes. The growth of this population N satisfies
the differential equation dN

dt = kN. Find the value of k in sec−1.

Exercises for section 3.2

3. Study the listed differential equations by answering the following questions:

• Draw the phase portrait.

• How many equilibria do we have here? At which x?

• For each equilibrium tell whether is it stable or non-stable

• What will be the final value of x if t → ∞. (e.g. x converges to equilibrium, or x goes to
infinity, etc.)

• List attractor/attractors and determine their basin/basins of attraction.

(a) dx
dt =−15+8x− x2

(b) dx
dt =−4+5x− x2

(c) dx
dt =−x(x2 + x−6)

(d) dx
dt = 8x− x3

(e) dx
dt = f (x) with the following graphs of f (x):

x

f(x)

0 4 10
x

f(x)

60 1

(f) dx
dt =

3x2

2+x2 − x (this equation (Adler 1996) describes the dynamics of population of species
which cannot bread successfully when numbers are too small or too large)

4. The following equation describes the production of a gene product with concentration x:

dx/dt =−x(x−0.2)(x−1)+ s

Here s is the parameter accounting for a chemical which produces the gene product. The initial
state of the system was: x = 0 and the value of s = 0. At some moment of time the value of s was
slowly increased from s = 0 to s = smax and then slowly decreased back to the value s = 0.
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(a) The value of function −x(x− 0.2)(x− 1) at its local minimum is −0.009. (Optional) Show
this from function derivative, or using calculator.

(b) What will be the value of the concentration of the gene product x at the end of the described
process for smax = 0.005?

(c) The same for smax = 0.02?

(d) Show that there is a critical value of smax that separates different outcomes of this process.
Find this critical value of smax.

5. Consider a model population with logistic growth which is subject to harvesting at a constant rate
h

dn/dt = r ∗n∗ (1−n/k)−h (3.28)

Find the maximal yield h.

Additional Exercises

6. Assume that the growth of a mass of an animal can given by the following differential equation:

dW
dt

= 400−0.3W

where W is the weight in grams and t time in weeks.

(a) Find the solution for the initial W (0) = 10.

(b) At what time the mass will reach half of the saturated value.

(c) If we assume that the linear size of the animal is proportional to the cubic root of the mass,
find at what time the object will reach half of its saturated linear size.

7. The dynamics of the ionic channels in the famous Hodgkin-Huxley model for a nerve cell is
described by the following type of equations:

dm
dt

= α(1−m)−βm

where m is a gating variable and α,β are the parameters.

Find the steady state values of the gating variable m and the characteristic time of approaching this
steady state.

8. Consider a model where the harvesting (hn) is proportional to the size of the population:

dn/dt = r ∗n∗ (1−n/k)−hn (3.29)

Find the maximal yield.

9. Compare the harvesting strategies (3.28) and (3.29). Which strategy is better. Why?



50 CHAPTER 3. DIFFERENTIAL EQUATIONS OF ONE VARIABLE



Chapter 4

System of two linear differential equations

Many biological systems are described by several differential equations. One of the most simple types
of such systems is a system of two linear differential equations that on a general form can be written as:

{ dx
dt = ax+by
dy
dt = cx+dy

(4.1)

here x(t) and y(t) are unknown functions of time t, and a,b,c,d are constants (parameters).

System (4.1) by itself has many practically important applications, for example compartmental models
in biology and pharmacology, electrical circuits in physics, models in economics, etc. System (4.1) will
also be very important for study so-called nonlinear system of differential equations which is widely
used in theoretical biology and will be considered in chapter 5.

This chapter we will introduce main definitions for linear systems (phase portrait and equilibria points)
we will derive a formula for general solution of this system and classify possible solutions of this system
and their phase portraits. These results will be used later to study models of biological processes.

4.1 Phase portraits and equilibria

Let us consider an example of system (4.1) with particular values for the parameters a,b,c,d:

{ dx
dt =−2x+ y
dy
dt = x−2y

(4.2)

Let us first solve this system on a computer. For that we need to choose initial values for x and y and
let the computer find their dynamics in the course of time. Solutions for x(0) = 1,y(0) = 2 are shown in
fig.4.1. We see, that in the course of time, x and y approach the stationary values x = 0.,y = 0. Let us
represent this solution graphically. For a differential equation with one variable (dx

dt = f (x)) we presented
the solutions in terms of a one-dimensional phase portrait using the x-axis. For system with two variables,
we need to use two axes to represent the dynamics. Let us consider a two dimensional coordinate system
Oxy with the x-axis for the variable x and the y-axis for the variable y. Such a coordinate system is
called a phase space. Let us represent the trajectory from fig.4.1 on the Oxy-plane. The initial sizes

51
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Figure 4.1:

of the populations were x(0) = 1,y(0) = 2, thus we put this point (1,2) on the Oxy-plane. At the next
moment of time we get other values for x and y and we also put them on the Oxy-plane and the x and
the y coordinates of the next point, etc. Finally, we will get the line shown in fig.4.2a that starts at (2,1)
and ends at (0,0). To show how x and y change in the course of time we draw an arrow as in fig.4.2a.
This trajectory is the first element of the phase portrait. If we start trajectories from many different initial
conditions we will get the complete phase portrait of system (4.2) (fig.4.2b). Each trajectory represents
a certain type of dynamics of x(t),y(t), which can be easily shown on time plots similar to fig.4.1. The
phase portrait in fig.4.2b give us the overall qualitative dynamics of our system: the variables x and y
approach 0,0 from all possible initial conditions.

x
-2. 0 2.

y

-2.

0

2.

x
-2. 0 2.

y

-2.

0

2.

Figure 4.2:
Phase portrait of system (4.2): (dx

dt =−2x+ y; dy
dt = x−2y) found numerically.

The main aim of our course is to develop a procedure of drawing a phase portrait of a general system of
two differential equations without using a computer which will allow us to study models of biological
processes. In the 1D case the phase portrait consisted of two main elements: equilibria points and
flows (trajectories) between them. Similar elements also compose the phase portrait of a system of two
differential equations. Let us start with the first main element and define equilibria of the system.

In the 1D case equilibria were points where our system is stationary: placed at an equilibrium point the
system will stay there forever. Mathematically equilibria for eq. dx

dt = f (x) (3.8) were determined as
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the points where dx
dt = 0, i.e. where f (x) = 0. In the 2D case it is required that at the equilibrium point

both variables x and y do not change their values, i.e. both dx
dt = 0 and dy

dt = 0. For system (4.2) these
conditions give the following the system of two algebraic equations for finding equilibria:

t { dx
dt = 0 =−2x+ y
dy
dt = 0 = x−2y

⇒
{

y = 2x
x−2y = 0

⇒
{

y = 2x
x−2∗2x = 0

⇒
{

y = 2x
−3x = 0 (4.3)

that have the only solution x = 0,y = 0. Therefore system (4.2) has an equilibrium point (0,0). As we
see in fig.4.2b this equilibrium is an attractor for all trajectories.

For a general linear system (4.1) the equilibria will be given by:
{

ax+by = 0
cx+dy = 0 (4.4)

This system always has a solution x = 0,y = 0 and thus the general linear system (4.1) always has an
equilibrium at the point x = 0,y = 0. In the next sections we will find out how to sketch a phase portrait
of (4.1) around this equilibrium. Our plan will be the following. We will first find the general analytical
solution of this system and then will use it to draw the phase portraits.

4.2 General solution of linear system

Consider a general system of two differential equations with constant coefficients:
{ dx

dt = ax+by
dy
dt = cx+dy

(4.5)

The general solution of (4.5) can be written in the following form
(

x
y

)
=C1

(
v1x
v1y

)
eλ1t +C2

(
v2x
v2y

)
eλ2t (4.6)

where λ1,λ2 are eigen values of the matrix A =

(
a b
c d

)
, and

(
v1x
v1y

)
,
(

v2x
v2y

)
are the corresponding

eigen vectors.

We will not derive the formula (4.6), we will show the main ideas behind the real derivation. For that let
us consider first the one dimensional case, and then extend it to a two dimensional system.

The easiest way to find solutions of system (4.5) is by the method of substitution. Let us illustrate this
method on example of 1D analog of system (4.5) which is 1D linear differential equation:

dx
dt

= ax (4.7)

We can easily solve (4.7) using the direct method of separation of variables and subsequent integration.
However, let us find the solution using another method, the method of substitution. The main idea of this
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method is to look for a solution in some known class of functions which should be chosen in advance
from some preliminary analysis. It was found that for linear systems this class is the class of exponential
functions Ceλt . Important questions such as: how was this class found and is this class unique etc, will
not be discussed. Our aim here will be an illustration of the main components of the solution rather than
comprehensive analysis of linear systems, which is a large special section of mathematics. Once the
class of functions is given (in our case the class of exponential functions), we need to check under which
circumstances it will satisfy the equations we are solving. Thus we will look for a solution of (4.7) of
the form x =Ceλt , where C and λ are unknown coefficients. The main idea of the method of substitution
is to find these unknown coefficients for a particular system. Let us substitute x = Ceλt into (4.7). We
find: dx

dt = (Ceλt)′ = λCeλt , or:

λCeλt = aCeλt

We can cancel eλt and C, and we get:
λ = a (4.8)

Hence we found the following the solutions of (4.7):

x =Ceat (4.9)

where C is an arbitrary constant.

Now, let us use the same approach for the two dimensional system (4.5). It turns out that the class of
functions in two dimensions will be the same as in one dimension, but because we have two variables,
we need to introduce different constants for x and y, so our substitution will be

x =Cxeλt ;y =Cyeλt or
(

x
y

)
=

(
Cx
Cy

)
eλt (4.10)

where Cx,Cy,λ are unknown coefficients. Let us make this substitution for a particular example:

( dx
dt
dy
dt

)
=

(
1 4
1 1

)(
x
y

)
(4.11)

Substitution for dx
dt = λCxeλt , dy

dt = λCyeλt ,x =Cxeλt ,y =Cyeλt gives:

{
λCxeλt =Cxeλt +4Cyeλt

λCyeλt =Cxeλt +Cyeλt (4.12)

we can cancel eλt , (but not Cx,Cy as in one dimensional case), and get:

{
λCx =Cx +4Cy
λCy =Cx +Cy

(4.13)

or in the matrix form:

λ
(

Cx
Cy

)
=

(
1 4
1 1

)(
Cx
Cy

)
(4.14)

We see that to find the solution of (4.11) we need to solve the problem (4.14), which is the eigen value
problem considered in section 2.3. To solve it we find eigen values from the characteristic equation
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(2.31): Det
∣∣∣∣

1−λ 4
1 1−λ

∣∣∣∣= (1−λ)∗ (1−λ)−4 = λ2−2λ−3 = 0 λ12 =
2±
√

22+3∗4
2 = 1± 1

2

√
16 =

1±2. Hence λ1 =−1,λ2 = 3

We use the express formula (2.36) for eigen vectors and get:

λ1 =−1;
(

v1x
v1y

)
=

(
−4

1− (−1)

)
=

(
−4
2

)
λ2 = 3;

(
v2x
v2y

)
=

(
−4
−2

)
. (4.15)

Formula (4.15) gives just one eigen vector for each eigen value. We also know (see formula (2.33 in
section 2.3) that all eigen vectors can be found by multiplication of this eigen vector by an arbitrary
constant. If we denote by C1 the constant for the first eigen vector and by C2 the constant for the second
eigen vector we will get the following solution of the eigen value problem (4.14):

λ1 =−1;
(

v1x
v1y

)
=C1

(
−4
2

)
λ2 = 3;

(
v2x
v2y

)
=C2

(
−4
−2

)
. (4.16)

If we substitute these eigen vectors into the formula (4.10) we find the following solutions of (4.11)

(
x
y

)
=C1

(
−4
2

)
e−1∗t

(
x
y

)
=C2

(
−4
−2

)
e3∗t (4.17)

Now let us prove the following property of system (4.5):
• If x1,y1 and x2,y2 are two solutions of (4.5), then x1 + x2,y1 + y2 is also a solution of (4.5).
Proof: As x1,y1 and x2,y2 are the solution this means that they satisfy (4.5), i.e.

{ dx1
dt = ax1 +by1

dy1
dt = cx1 +dy1

{ dx2
dt = ax2 +by2

dy2
dt = cx2 +dy2

(4.18)

If we add equations for dx1
dt and dx2

dt we get: dx1
dt + dx2

dt = ax1 +by1 +ax2 +by2, which can be re-written
as: d(x1+x2)

dt = a(x1+x2)+b(y1+y2). If we do the same for equations for dy1
dt and dy2

dt we will finally get:

{
d(x1+x2)

dt = a(x1 + x2)+b(y1 + y2)
d(y1+y2)

dt = c(x1 + x2)+d(y1 + y2)
(4.19)

which explicitly shows that x1 + x2,y1 + y2 is a solution of (4.5).

If we apply this result for two found solutions (4.17) of (4.11) we can conclude that the sum of these two
solutions is also a solution of (4.11):

(
x
y

)
=C1

(
−4
2

)
e−1∗t +C2

(
−4
−2

)
e3∗t (4.20)

We proved formula (4.6) for a particular system. If we apply the same steps for a general system (4.5)
we will get the general solution in the form (4.6).

So, we solved system (4.5). In the next sections we will find out how to draw its phase portraits.
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4.3 Real eigen values. Saddle, node.

As we know, the general solution of (4.1) is given by (4.6). We can use this formula to sketch a phase
portrait of this system. It turns out, that we can have several different types of equilibria depending on
the eigen values λ1,λ2. As we know λ1,λ2 are the roots of the characteristic equation (2.31), which is
a general quadratic equation. Therefore, the roots can be real or complex numbers. In this section we
consider the case of real roots.

So, assume that the eigen values λ1 and λ2 are real. This yields the following three cases:

1. Eigen values have different signs (λ1 < 0;λ2 > 0, or λ1 > 0;λ2 < 0).

2. Both eigen values are positive (λ1 > 0;λ2 > 0)

3. Both eigen values are negative (λ1 < 0;λ2 < 0)

Note, that we do not consider the case when λ = 0. This situation is quite rare and is not considered in
this course.

4.3.1 Saddle; λ1 < 0;λ2 > 0, or λ1 > 0;λ2 < 0

System (4.11), which we solved in section 4.2, had eigen values λ1 =−1,λ2 = 3. Let us draw its phase
portrait. The general solution of this system is given by (4.20)

(
x
y

)
=C1

(
−4
2

)
e−1∗t +C2

(
−4
−2

)
e3∗t . (4.21)

Because C1,C2 are arbitrary constants let us consider three simple cases, in which one of these constants,
or both of them are zero.

1) If C1 = 0,C2 = 0, then x = 0,y = 0 and do not depend on time. The trajectory is just one point (0,0),
which is the equilibrium point of the system (4.11).

2) If C1 = 0,C2 = any number, then
(

x
y

)
=C2

(
2
1

)
e3∗t . Because e3∗t can change from 1 (at t = 0)

to any infinitely large number and C2 is an arbitrary positive or negative number, this expression can be
rewritten as: (

x
y

)
=C2

(
−4
−2

)
e3∗t =

(
−4
−2

)
K = V2K (4.22)

where K is an arbitrary number from −∞ < K < ∞ and V2 is a vector
(
−4
−2

)
. Thus expression (4.22)

means multiplying of the eigen vector V2 by an arbitrary number K. In general, if we multiply a vector
by a positive number K we get a vector with the same direction but the length will be increased K times.
If we multiply the vector by a negative number, the direction of the vector will be changed to the opposite
and the length will be changed by a factor |K|. Because in (4.22) K assumes all values from−∞<K <∞,

this will give a straight line along this vector
(

2
1

)
(fig.4.3a). To complete drawing the trajectory we

need to show arrows indicating the motion of a point along the trajectory in the course of time. Because
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time dynamics is given by e3t , |K| in (4.22) will grow in the course of time, i.e. it will become either
more positive, or more negative depending on its initial sign. Geometrically this means that a point will
move apart from the origin of the Oxy coordinate system and we will get a picture as in fig.4.3b. 3) The

y y

x

a b

x
−2

−4

Figure 4.3:

third case is C1 = any number, C2 = 0. The solution in this case is
(

x
y

)
=C1

(
−4
2

)
e−t . (4.23)

As in previous case we conclude, that all trajectories in this case will be located on a straight line

along the vector
(
−4
2

)
and we just need to show the direction of flow along this line. In this case,

time dynamics is given by the function e−t , which approaches zero when t goes to infinity. Therefore,
independent of initial conditions (independent of the value of C1) we will approach the point x = 0,y= 0,
and the arrows will have the following direction (fig.4.4). Finally let us draw the phase portrait for

x

y

a
2

−4

y

x

a b

Figure 4.4:

arbitrary C1 and C2 (fig.4.4b). Let us consider one trajectory for which C1 6= 0;C2 6= 0, for example:
C1 = 0.1, C2 = 0.1. The solution in this case is given by:

(
x
y

)
= 0.1

(
−4
2

)
e−t +0.1

(
−4
−2

)
e3t (4.24)

This trajectory starts as point x = −0.4+ 0.2 = −0.2; y = 0.2− 0.1 = 0.1. In the course of time e−t

will become smaller and smaller, while e3t will grow. So, the first term in (4.24) 0.1
(
−4
2

)
e−t will
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be small compared to the second term 0.1
(
−4
−2

)
e3t , and the dynamics at large t will be described

by an approximate formula :
(

x
y

)
≈ 0.1

(
−4
−2

)
e3t , thus the trajectory will approach the line (4.22)

presented in fig.4.3b. There will be similar behavior for any other trajectories: independently on staring
points they will approach line of fig.4.3b from various directions. The qualitative picture will be as in
fig.4.4b.

Such a phase portrait is called a saddle point. It has the following important features: (1) There is an
equilibrium point at x = 0,y = 0. (2) There are two lines associated with eigen vectors of our system
(fig.4.3b,fig.4.4a). These lines are called manifolds. The manifolds in fig.4.3b and fig.4.4a are different.
If we follow the trajectory along the manifold in fig.4.3b the distance to the equilibrium increases (see
fig.4.4). On the contrary, if we follow the trajectory along the manifold in fig.4.4a the distance to the
equilibrium decreases. The manifold from fig.4.3b is called a non-stable manifold. The manifold from
fig.4.4a is called a stable manifold.

Conclusions of this study can be easily generalized. If we consider an expression:
(

x
y

)
=C

(
vx
vy

)
eλt , (4.25)

it will obviously determine a manifold (straight line) along the vector
(

vx
vy

)
and the stability of this

manifold will be determined by eλt . There are two main types of behavior of the function eλt (fig.4.5).
If λ < 0,eλt approaches zero, when t increases. If λ > 0,eλt grows to infinity with increasing t. Hence,
if λ < 0, eq.(4.25) will determine a stable manifold: x,y will approach 0 in the course of time (as in
fig.4.4a). If λ > 0, then x,y will diverge to infinity and we will get a non-stable manifold.

t t

λ<0 λ>0

a b

1−

1−

Figure 4.5:

Conclusion 1 The equation (4.25) on a phase portrait gives a manifold in the form of a straight line.

This line goes through the origin and is directed along the vector
(

vx
vy

)
. This manifold is stable if

λ < 0 and non-stable if λ > 0.

Finally the formal definition of a saddle point:

Conclusion 2 Fig.4.4 shows the phase portrait of a saddle point. It occurs close to equilibrium, at
which eigen values of the system are real and have different signs, i.e. λ1 < 0;λ2 > 0, or λ1 > 0;λ2 < 0.
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The phase portrait of a saddle point has two manifolds directed along the eigen vectors. One manifold
is stable (corresponding to the negative eigen value of the system). The other manifold is non-stable
(corresponding to the positive eigen value of the system).

4.3.2 Non-stable node; λ1 > 0;λ2 > 0

Let us draw the phase portrait for the case when eigen values are real and are both positive. The general
solution of the system is given by (4.6):

(
x
y

)
=C1

(
v1x
v1y

)
eλ1t +C2

(
v2x
v2y

)
eλ2t (4.26)

From the previous analysis we immediately conclude, that the phase portrait in this case has the equilib-

rium point at (0,0) and two unstable manifolds along the vectors
(

v1x
v1y

)
and

(
v2x
v2y

)
(fig.4.6a). Let

us put that on the graph (fig.4.6b).
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y y

x
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Figure 4.6:

To complete the picture we need to add several trajectories which start between the manifolds. For such
trajectories C1 6= 0 C2 6= 0 and both terms in (4.26) will diverge to plus or minus infinity. So, we get
trajectories as in fig.4.6b. Such an equilibrium is called a non-stable node.

Conclusion 3 If the eigen values of system (4.1) are real and both positive (λ1 > 0,λ2 > 0) we have an
equilibrium point called a non-stable node. To draw a phase portrait at this equilibrium we need to show
two non-stable manifolds along the eigen vectors of system (4.1) and add several diverging trajectories
between the manifolds.

4.3.3 Stable node; λ1 < 0;λ2 < 0

The general solution in this case has the same form (4.26). The phase portrait will be similar to fig.4.6,
but because λ1 < 0;λ2 < 0 both manifolds will be stable. So we get a picture fig.4.7a

If the trajectory starts between the manifolds (C1 6= 0 C2 6= 0) it will also approach equilibrium as both
terms in (4.26) will converge to 0, because λ1 < 0;λ2 < 0 (fig.4.7b). Such an equilibrium is called a
stable node.



60 CHAPTER 4. SYSTEM OF TWO LINEAR DIFFERENTIAL EQUATIONS

x
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a b

Figure 4.7:

Conclusion 4 If the eigen values of system (4.1) are real and both negative (λ1 < 0,λ2 < 0) we have an
equilibrium point called stable node. To draw a phase portrait at this equilibrium we need to show two
stable manifolds along the eigen vectors of system (4.1) and add several trajectories converging to the
equilibrium (0,0).

4.4 Phase portraits for complex eigen values: spiral, center

In the previous section we have studied the case when the roots of the characteristic equation (2.31) are
real, and found three possible types of phase portrait (equilibria): saddle, stable node and unstable node.
Here we will study the case when the roots of the characteristic equation (2.31) are complex.

4.4.1 General ideas on equilibria with complex eigenvalues

From section 4.2 we know that in order to find the type of phase portrait of linear system we need to
solve the characteristic equation (2.31) which is a general quadratic equation, and because the parameters
a,b,c,d of the linear system are arbitrary the coefficients of the characteristic equation are also arbitrary.
Therefore, it may happen that the discriminant of this quadratic equation will be negative and we will
have complex eigen values. From equation (2.7) we know that these eigen values will be given by

λ1 =
−B+ i

√
−D

2
λ2 =

−B− i
√
−D

2
(4.27)

or if we denote the real part of these complex numbers as : α = −B
2 and the imaginary part as β =

√
−D
2

we can rewrite (4.27) as

λ1,2 = α± iβ (4.28)

Which type of dynamics do we expect here. If we drop for a while the imaginary part iβ in (4.28), we
get that λ1 = λ2 = α, i.e. both eigen values will be the same and hence they will have the same sign.
Which type of equilibria do we have for two real eigen values which have the same sign? We can have
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either a non-stable node if λ1 > 0,λ2 > 0 , or a stable node, if λ1 < 0,λ2 < 0 (see section 4.2). In the
case of a non-stable node all the trajectories diverge from the equilibrium (fig.4.6b), while in the case of
a stable node all the trajectories converge to it (fig.4.7b). It turns out that we will get similar behavior for
complex eigen values: if Reλ1,2 > 0 we will get divergence of the trajectories, if Reλ1,2 < 0 we will get
convergence of the trajectories to the equilibrium. However, the picture will be slightly different from
fig.4.6b and fig.4.7b, as the imaginary part of the eigen values Imλ1,2 will add rotation to the trajectories.

The complete derivation of the formula for the general real solution of system (4.1) with complex eigen
values is given in the appendix at the end of this chapter for extra reading. Here we will just demonstrate
that Imλ1,2 adds rotation.

4.4.2 Center, spiral

Let illustrate that the imaginary part of the complex eigen value of the characteristic equation results in
a rotation of the trajectories. For that let us consider a system:

( dx
dt
dy
dt

)
=

(
0 2
−2 0

)(
x
y

)
or

{ dx
dt = 2y
dy
dt =−2x

(4.29)

In this case the eigen values are given by: Det
∣∣∣∣
−λ 2
−2 −λ

∣∣∣∣ = λ2 + 4 = 0 λ1,2 = ±2i. Thus we have

purely imaginary eigen values. It turns out that we can draw a phase portrait of this system using the
following trick. Let us multiply the first equation in (4.29) by x, the second equation by y and let us add
them together. We get

xdx
dt = x2y

+

ydy
dt =−y2x

gives
xdx

dt + ydy
dt = 2xy−2xy = 0

(4.30)

Now note that

x
dx
dt

=
1
2

dx2

dt

(just check this by applying the chain rule for dx2

dt ), and similarly

y
dy
dt

=
1
2

dy2

dt
hence eq.(4.30) can be rewritten as:

1
2

dx2

dt + 1
2

dy2

dt = 0

d(x2+y2)
dt = 0

We know that if the derivative of the function f is zero (d f
dt = f ′(x) = 0) then the function f is a constant,

thus the above equation implies:
x2 + y2 =Const (4.31)
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Expression (4.31) gives a so-called first integral of our system: combination of variables which are
preserved in time. It is not equivalent to the solution of our system, but using it we can draw the phase
portrait of system (4.29).

Because Const in (4.31) is an arbitrary positive number, let us denote it as Const = A2, where A is just
another arbitrary constant. Thus we will get the equation x2 + y2 = A2, which represents a graph of a
circle with radius A and with the center at the origin (fig.4.8a).
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Figure 4.8:

To find the dynamics on this circle let us find dy
dt at a point x = A,y = 0 (the bold point in fig.4.8a). From

eq.(4.29 dy
dt = −2x = −2A < 0, i.e. the coordinate y decreases at this point in the course of time. Thus

we conclude that motions of trajectory along the circle will be in the clockwise direction. If we draw a
series of such circles for different A we will get the phase portrait as shown in fig.4.8b. The dynamics of
the x and y variables can be found by considering motion along trajectories of the system: motion here
is a rotation of a point along the circle. During this rotation the variable x changes periodically (between
the values +A and −A), and thus we will see periodic oscillations. The same is valid for the variable y.
An example of such dynamics is represented in fig.4.8c. The equilibrium point (0,0) in such system is
called a center. The phase portrait in Fig.4.8 is a set of circles, which is a consequence of the symmetry
of system (4.29). In a general case, if λ1,2 =±iβ, we will also get a center point, similar to that in fig.4.8,
but instead of circles we can get a series of embedded ellipses. The dynamics of the variables will always
be oscillations.

Conclusion 5 If the eigen values of system (4.1) are λ1,2 =±iβ, we have an equilibrium point called a
center. The dynamics of variables x,y are oscillations. The phase portrait is a set of embedded ellipses.

A computer generated phase portrait of the system dx
dt = −x− 2y; dy

dt = x+ y is shown in fig.4.9a. The
eigen values in this case are λ1,2 =±i0.1. The time-plot for the x and y variables is shown in fig.4.10(left).

Conclusion 6 The imaginary part of the eigen values results in the rotation of trajectories on a phase
portrait.

Now let us consider the next two cases: λ1,2 = α± iβ.

As we discussed in section 4.3, Reλ1,2 determines convergence or divergence of the trajectories to the
equilibrium. In the case λ1,2 = α± iβ;α < 0 we expect that the real part of the eigenvalue will give
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a behavior similar to the case of both negative real eigenvalues, hence we expect the convergence of
trajectories to the equilibrium, as for a stable node. In addition to this, as we saw in the previous
section, the imaginary part of the eigen values causes the rotation of the trajectory. If we add these two
processes together we will get convergence to the equilibrium with rotation, hence trajectories will have
the form of spirals. A computer generated phase portrait for this case is shown in fig.4.9b. The system
is dx

dt = −x− 2y; dy
dt = x+ 0.7y. The eigen values in this case are λ1,2 = −0.15± i0.13. The time-plot

for the x and y variables is shown in fig.4.10(middle). The dynamics of the system are oscillations with
gradually decreasing amplitude.

Conclusion 7 If the eigen values of system (4.1) are λ1,2 = α± iβ;α < 0, we have an equilibrium point
called a stable spiral, fig.4.9b.

The last case occurs if λ1,2 = α± iβ;α > 0. This case is similar to the previous one. The only difference
is that because Reλ1,2 = α > 0, the real part gives motion equivalent to a non-stable node, or divergence
of trajectories from the equilibrium. So, together with rotation from the imaginary part of λ we get
the following phase portrait (fig.4.9c). This phase portrait is generated by computer for the system
dx
dt = −x−2y; dy

dt = x+1.2y. The eigen values in this case are λ1,2 = 0.1± i0.89. The time-plot for the
x and y variables is shown in fig.4.10(right). The dynamics of the system are oscillations with gradually
increasing amplitude.
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Figure 4.10: The dynamics of variables x and y for the phase portraits shown in fig.4.9. The left picture
corresponds to the equilibrium point center, the middle picture corresponds to the equilibrium point
stable spiral and the right picture corresponds to the equilibrium point non-stable spiral.

Conclusion 8 If the eigen values of system (4.1) are λ1,2 = α± iβ;α > 0, we have an equilibrium point
called a non-stable spiral, fig.4.9c.
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We have found all possible types of equilibria which can occur in 2D systems: saddle, non-stable node,
stable node, center, non-stable spiral and stable spiral. The next question which we will discuss here is
the stability of these equilibria.

4.5 Stability of equilibrium

We will call an equilibrium point stable, if there is a neighborhood of this equilibrium, such that all
trajectories which start in this neighborhood will converge to the equilibrium (Fig.4.11a). We will call
the equilibrium point non-stable, if there is at least one diverging trajectory from the close neighborhood
of this equilibrium (fig.4.11b).

x

y y

x
a b

Figure 4.11:

If we analyze the stability of the 6 types of equilibria studied in the previous section we find the follow-
ing:

Stable equilibria

1. Stable node λ1 < 0;λ2 < 0 real

2. Stable spiral λ1,2 = α± iβ;α < 0

Non-stable equilibria

1. Non-stable node λ1 > 0;λ2 > 0 real

2. Non-stable spiral λ1,2 = α± iβ;α > 0

3. Saddle point λ1 < 0;λ2 > 0; or λ1 > 0;λ2 < 0 real

In case of spirals and nodes the stability and non-stability is obvious. In case of a saddle point we have
a converging trajectory, however the existence of the diverging trajectories (fig.4.4b) implies that this
equilibrium point is non-stable. The last case, λ1,2 =±iβ (center point), is non conclusive. Trajectories
do not converge and do not diverge from the equilibrium. Usually this case is treated as neutrally stable.
All these cases can be formulated in the following theorem.
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Theorem 1 If all eigenvalues of the linear system (4.1) have negative real parts, then the equilibrium
point x = 0,y = 0 is stable.

It is easy to see, that this theorem includes all listed stable equilibria. It obviously works for a stable
spiral, but it also works for a stable node, because any real number can be considered as a complex
number with imaginary part equal to zero. For example: −3 can be represented as z = −3 = −3+ i0,
and Rez =−3; Imz = 0.

4.6 Exercises

Exercises for section 4.2

1. Find the general solution of the following systems of ordinary differential equations:

(a)
( dx

dt
dy
dt

)
=

(
−2 1
1 −2

)(
x
y

)

(b)
( dx

dt
dy
dt

)
=

(
3 −1
−2 4

)(
x
y

)

2. Find the solution for the following initial value problem:

( dx
dt
dy
dt

)
=

(
1 −2
5 8

)(
x
y

) (
x(0)
y(0)

)
=

(
3
−3

)

(Hint: See an example of solution in section 11.0.1).

3. Two different concentrations of a solution are separated by a membrane through which the solute
can diffuse. The rate at which the solute diffuses is proportional to the difference in concentrations
between two solutions. The differential equations governing the process are:

{
dC1/dt =− k

V1
(C1−C2)

dC2/dt = k
V2
(C1−C2)

where C1 and C2 are the two concentrations, V1 and V2 are the volumes of the respective compart-
ments, and k is a constant of proportionality. If V1 = 20liters, V2 = 5liters, and k = 0.2 liters/min
and if initially C1 = 3 moles/liter and C2 = 0, find C1 and C2 as functions of time.

Exercises for sections 4.3 and 4.4

4. Find eigen values and eigen vectors (for real eigen values only) of the following systems. Deter-
mine equilibrium type and sketch phase portraits. For real eigen values show non-stable, stable
manifolds and several trajectories between the manifolds.

(a)
{ dx

dt = x+4y
dy
dt = 2x+3y
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(b)
{ dx

dt = 5x− y
dy
dt = 3x+ y

(c)
{ dx

dt = 3x−5y
dy
dt = x− y

(d)
{ dx

dt =−2x+ y
dy
dt = x−2y

(e)
{ dx

dt =−2y
dy
dt = x−2y

(f)
{ dx

dt =−x− y
dy
dt = 2x+ y

(g)
{ dx

dt =−2x− y
dy
dt = 3x+2y

5. Study the following linear system with a parameter a:

{ dx
dt =−2x−ay
dy
dt = 3x− y

Find the types of equilibrium which are possible for different values of −∞ < a < ∞. Give the
parameter region for each equilibrium and draw qualitative phase portraits. For which parameter
values is the equilibrium stable?

6. For which values of parameters a and b does the following system has periodic oscillations (i.e. a
center equilibrium point): { dx

dt =−ax+ y
dy
dt = (2a−3)x−by

7. Compartmental models play an important role in different parts of population biology, pharma-
cology and biochemistry. They describe the interaction between several processes, which may be
interactions of populations, chemical reactions, etc. A two compartment model is schematically
shown in fig.4.12. It represents two interacting species x and y. The concentration of the species x
can be changed either due to a transition to species y with the rate given by ax, or x can die with the
rate cx. Similar transitions exist also for the species y. The rates of these processes are specified in
the figure.

yx
ax

by

cx ey

Figure 4.12:

(a) Derive a system of two differential equations for species x and y.

(b) If a = 0.5,b = 2,c = 4.5,e = 3 find equilibrium type. Is it stable?

(c) Determine the stability of the equilibrium in a general case when a > 0,b > 0,c > 0,e > 0
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4.7 Additional concepts (appendix)

4.7.1 General solution for complex eigen values

Notes about general solution of a system with complex eigenvalues

It turns out that if λ1,2 = α± iβ formula (4.6) is still valid, so the solution can be represented in the form:
(

x
y

)
=C1

(
v1x

v1y

)
eλ1t +C2

(
v2x

v2y

)
eλ2t (4.32)

but as λ1 = α+ iβ;λ2 = α− iβ we get
(

x
y

)
=C1

(
v1x

v1y

)
e(α+iβ)t +C2

(
v2x

v2y

)
e(α−iβ)t (4.33)

This expression gives the correct solutions of (4.5). However, the form of the solution is not good. First, because

λ1,2 are complex, the eigenvectors
(

v1x

v1y

)
and

(
v2x

v2y

)
will also be complex. Next, we should consider C1,C2

as general complex constants. Therefore (4.33) is a quite complicated expression which gives x and y as complex
valued functions of time t. Mathematically it is correct and if we substitute (4.33) into the original equation (4.5)
we get an equality. However, we need to draw a phase portrait of (4.5) on the Oxy-plane, i.e. we only need the real
solutions of our system. Such real solutions are present in the general expression (4.33), i.e. they are a subset of
all the possible solutions. However, extracting them from (4.33) is not a simple task. We will highlight the main
idea behind this derivation below. To derive the general expressions we will need the following Euler formula.

Euler formula

The Euler formula gives a representation of eiβt in terms of trigonometric functions. It is quite unexpected:

eiβt = cosβt + isinβt (4.34)

or in another representation:
eiφ = cosφ+ isinφ (4.35)

When you see this formula for the first time it looks quite crazy. We know that sinφ and cosφ come from the
simple geometry of triangles, i =

√
−1 and e is a special exponential function. Why are these functions connected

together in such a simple way (4.35)?

To prove this formula, one should use Taylor series. However, here I will present another simpler derivation of
(4.35) on the basis of differential equations.

At the beginning of this chapter, in order to find a solution of (4.5), we first considered a one dimensional dif-
ferential equation dx

dt = ax, and we found its solution Ceat . Consider the following initial value problem for this
equation:

dx
dt

= ax x(0) = 1 (4.36)

This initial value problem has the unique solution x(t) = eat . So we say, that the solution of (4.36) is eat . But
we can also say it vice versa: we can define the exponential function eat as the function which satisfies the initial
value problem (4.36). For example, if we give to a person just this equation and a computer, he will be able to
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solve it and to draw the graph of eat , even without knowledge about exponential functions. The advantage of such
a definition is that it can be easily extended to complex numbers. So, let us define eit as a function which satisfies
the initial value problem (4.36) with a = i

dx
dt

= ix x(0) = 1 (4.37)

In other words: eit must be the function x(t), such that x(0) = 1, and the derivative of this function dx
dt (t) must be

equal to this function times i, i.e. dx
dt (t) = ix(t). Let us find an expression which satisfies these conditions. It turns

out that it will be x(t) = cos t + isin t. Let us check it. The first condition is satisfied:

x(0) = cos0+ isin0 = 1+0i = 1,

To check the second condition we write:

dx
dt

(t) = (cos t + isin t)′ = cos′ t + isin′ t =

−sin t + icos t

if we replace −1 by i2 we get:

dx
dt

(t) =−sin t + icos t = i2 sin t + icos t =

i(cos t + isin t) = ix(t),

i.e. the second condition is also satisfied. So the function x(t) = cos t + isin t gives the solution of (4.37), hence it
is the same as eit or eit = cos t + isin t and we get the Euler formula (4.35). The formula (4.34) is just the formula
(4.35) in which instead of φ the letters βt are used. To find e(α+iβ)t we write:

e(α+iβ)t = eαteiβt = eαt(cosβt + isinβt) (4.38)

General solution

Now let us find a solution of a system with imaginary eigenvalues. As we know the general solution is given by
the formula (4.33) and because of the Euler formula we can rewrite it in the following way:

(
x
y

)
=C1

(
v1x

v1y

)
eαt(cosβt + isinβt)+C2

(
v2x

v2y

)
eαt(cosβt− isinβt), (4.39)

where C1,C2 are arbitrary complex constants and
(

v1x

v1y

)
and

(
v2x

v2y

)
are complex eigen vectors. Now we

should find a real part of this complicated expression and get a general real solution of our system in this case. A
general solution of a system of two differential equations should depend on two arbitrary constants as the initial
value of each of the variables can be arbitrary. We will use this fact to find the general solution. Our idea is
instead of extracting all real solutions from (4.39) we will find just two real solutions. By multiplying them by two
arbitrary constants we will get a general solution.

We will be able to find these two solutions from the first term of (4.39):

Y1 =

(
v1x

v1y

)
eαt(cosβt + isinβt) = v1eαt(cosβt + isinβt) (4.40)
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Let us extract real and an imaginary parts of this term. If we use the formula (2.36) for the eigen value λ = α+ iβ
we find the eigen vector v1: It has the real and imaginary parts:

v1 =

(
v1x

v1y

)
=

(
−b

a−λ1

)
=

(
−b

a−α− iβ

)
=

(
−b

a−α

)
+ i
(

0
−β

)
= vr + ivi (4.41)

The vector v1 has the real part vr and imaginary part vi. So, the term (4.40) can be written as:

Y1 = (vr + ivi)eαt(cosβt + isinβt) =

eαt(vr cosβt + ivr sinβt + ivi cosβt−vi sinβt)

= eαt(vr cosβt−vi sinβt)+ ieαt(vr sinβt +vi cosβt)

If we denote:
y1 = eαt(vr cosβt−vi sinβt)
y2 = eαt(vr sinβt +vi cosβt)

(4.42)

the term (4.40) can be rewritten as
Y1 = y1 + iy2.

Let us prove that both y1 and y2 are the real solutions of (4.5). For that we will use the fact that (4.39) gives a
solution of (4.5) and hence Y1 is a complex solution of (4.5) as it is a part of (4.39).

System (4.5) in a matrix form can be written as:

dX
dt

= AX (4.43)

As Y1 is a solution, it satisfies (4.43):

dY1

dt
= AY1

dy1

dt
+ i

dy2

dt
= A(y1 + iy2)

dy1

dt
+ i

dy2

dt
= Ay1 + iAy2

Equating the real and imaginary parts yields

dy1

dt
= Ay1

dy2

dt
= Ay2

Hence y1 and y2 are real solutions of (4.5). Finally, because y1 and y2 are real solutions of (4.5) the general solution
is given by the formula: (

x
y

)
=C1y1 +C2y2 (4.44)

where C1 and C2 are arbitrary constants and y1 and y2 are given by (4.42).

Example Find the general solution of the following system.
( dx

dt
dy
dt

)
=

(
0 2
−2 0

)(
x
y

)
or

{ dx
dt = 2y
dy
dt =−2x

(4.45)

Solution. The eigen values are given by: Det
∣∣∣∣
−λ 2
−2 −λ

∣∣∣∣= λ2+4 = 0, λ1,2 =±
√
−4 =±2i. So the eigen vector

v1 corresponding to the eigen value λ = 2i is:

v1 =

(
v1x

v1y

)
=

(
−2

0−2i

)
=

(
−2
0

)
+ i
(

0
−2

)
= vr + ivi (4.46)
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So,

y1 = e0(

(
−2
0

)
cos2t−

(
0
−2

)
sin2t) =

(
−2cos2t
2sin2t

)

y2 = e0(

(
−2
0

)
sin2t +

(
0
−2

)
cos2t) =

(
−2sin2t
−2cos2t

)

Therefore the solution from the formulas (4.44) is:
(

x
y

)
=C1

(
−2cos2t
2sin2t

)
+C2

(
−2sin2t
−2cos2t

)
(4.47)

Or if we denote −2C1 = A and −2C2 = B we get:

{
x = Acos2t +Bsin2t
y =−Asin2t +Bcos2t

(4.48)

Let us check that (4.48) does gives a solution of (4.45). Substitution of (4.48) into equation (4.45) yields:
{

(Acos2t +Bsin2t)′ = 2∗ (−Asin2t +Bcos2t)
(−Asin2t +Bcos2t)′ =−2∗ (Acos2t +Bsin2t)

or
{
−2Asin2t +2Bcos2t = 2∗ (−Asin2t +Bcos2t)
−2Acos2t−2Bsin2t =−2∗ (Acos2t +Bsin2t)

So, (4.48) is a solution of (4.45).

Finally note that formula (4.31) which we got for the same equation (4.45) is of course valid for functions given in
(4.48). For that you need to find x2 + y2 with x and y given by (4.48). A direct computation will give us

x2 + y2 = A2 +B2 =Const

i.e. the same result as in (4.33). (Note that in order to get the final result you need to apply several times the
well-known formula from trigonometry sin2(α)+ cos2(α) = 1).



Chapter 5

System of two non-linear differential equations

5.1 Introduction and first definitions

5.1.1 Phase portrait

After analyzing linear systems let us consider a general non-linear system which can be written in the
following general form: { dx

dt = f (x,y)
dy
dt = g(x,y)

(5.1)

Many biological systems are described by such systems. One of the classical examples of ecological
models (the predator-prey model) can be derived as follows. Let us consider the prey population x with
a logistic growth given by eq.(3.21): dx

dt = rx(1− x/k) , which interacts with the predator y and let us
assume that the effect of the predator on the prey population is given by the term −bxy. Then, if we
assume that the growth of the predator population is proportional to the predator prey interaction cxy
and that the death rate of the predator is given by −dy, we will get the following system of differential
equations:

{ dx
dt = rx(1− x/k)−bxy
dy
dt = cxy−dy

(5.2)

Formally system (5.2) describes the predator-prey interactions with competition in the prey population.
It has several parameters, which account for the specific properties of the populations. Let us study it for
r = 3,k = 1,b = 1.5,c = 0.5,d = 0.25:

{ dx
dt = 3x(1− x)−1.5xy
dy
dt = 0.5xy−0.25y

(5.3)

If, as in section 4.1, we solve this system on a computer, we will get the following phase portrait
(fig.5.1b). We see, that in the course of time all trajectories approach the stationary values of x = 0.5;y =
1.

71
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Figure 5.1: A trajectory starting at point x(0) = 2,y(0) = 1.5 (a) and the complete phase portrait of
system (5.3) generated by a computer

The main aim of our course is to develop the procedure of drawing a phase portrait of a general system
of two non-linear differential equations without using a computer. We expect that as for 1D differential
equation (section 3.2.1) and for 2D linear systems (section 4.1) the phase portrait should include two
main elements: equilibria points and flows (trajectories) between them. Let us define first equilibria
points of a general non-linear system (5.1).

5.1.2 Equilibria

In the 1D case and for 2D linear systems the equilibria were the points where our system is stationary:
placed at equilibrium point the system will stay there forever. Therefore, for 1D equation dx

dt = f (x)
equilibria were determined as the points where dx

dt = 0, i.e. where f (x) = 0. For 2D linear system
(section 4.1) we required that both variables x and y are stationary at equilibria points, i.e. both dx

dt = 0
and dy

dt = 0. For a general non-linear system (5.1) these conditions yield the following definition of
equilibria:

Definition 7 A point (x∗,y∗) is called an equilibrium point of a system (5.1) if

f (x∗,y∗) = 0, g(x∗,y∗) = 0 (5.4)

Equilibria in two dimensions are also stationary points, i.e. if system is placed at the equilibrium it will
stay there forever. Thus this trajectory will contain just one point.

Example. Find the equilibria of the system (5.3):

Solution To find the equilibria we need to solve a system of algebraic equations (5.4) which in our case
becomes: {

3x(1− x)−1.5xy = 0
0.5xy−0.25y = 0 (5.5)

From the second equation we find y(0.5x−0.25) = 0, which can be either when y = 0 or when x = 0.5.
Substitution of y = 0 to the first equation yields 3x(1−x)−0 = 0. This equation has two solutions x = 0
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and x= 1. Substitution of the other case x= 0.5 to the first equation gives 3∗0.5∗(1−0.5)−1.5∗0.5y=
0, or y = 1. Thus we have found three equilibria points: (0,0),(1,0) and (0.5,1).

We see in fig.5.1 that point (0.5,1) is indeed an important attractor of our system which determines the
final state of the populations. The other two points are not apparent in fig.5.1, however, as we will see
later they also account for important changes of trajectories of our system.

Thus we have defined equilibria for 2D systems. Our next step is to understand what is the 2D analog of
flows, which on the 1D phase portrait were represented by the ’→’ or← arrows.

5.1.3 Vector field

In 1D flows, visualizations of the direction of change of the variable x were given via the sign of its
derivative dx

dt . In 2D, both variables can change and the rate of their change is given by the derivatives dx
dt

and dy
dt . In 1D we were able to find the direction of flow at any point x from the right hand side function

of the equation dx
dt = f (x). Similarly in 2D we can find dx

dt and dy
dt at any point (x,y) from the right hand

sides of system (5.1) ( functions f (x,y) and (g(x,y)). For example for system (5.3) at a point x = 1,y = 1
we find dx

dt = f (x,y) = 3x− 3x2− 1.5xy = 3− 3− 1.5 = −1.5, and dy
dt = g(x,y) = 0.5xy− 0.25y. =

0.5−0.25 = 0.25. However, what do these two numbers show? They tell us that if the size of the prey
population x = 1 and the size of the predator population is y = 1, then the prey population decreases
with the rate of −1.5 and the predator population grows with the rate of 0.25. On the phase plane x,y
this will result in a shift of a point representing populations from point (1,1) (point A in fig.5.2a) to some
point B which is to the left and upward from point A. Let us make it more quantitative. We know that
the rate of change of x in our case is 1.5/0.25 times larger than the rate of change of y. This determines
the direction of shift of point B relative to point A. The easiest way to represent it is to draw from point
(1,1) a horizontal arrow heading to the left with the length of 1.5 and a vertical arrow heading upward
with the length of 0.25. The direction of the overall shift will be given by the resultant vector of these
two vectors fig.5.2b. The resultant vector will give us the direction tangent to the trajectory which goes
through the given point. We can generalize this result as:

y

x

y

a b
x

A

B

A
B

1

1

Figure 5.2:

Conclusion 9 At any point (x,y) of a phase space for system (5.1), we can define the vector ~v with the
components ( f (x,y),g(x,y)). Such vectors will be tangent to the trajectories of our system. We can find
this vector field without a solution of our system, just from the right hand sides of our system.

Note, that the length of the vector in fig.5.2 is not important, as we are interested in the direction,
only. If we apply the same procedure at many points and represent the directions by shorter vectors we
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will get the following vector field of the system (5.3) (fig.5.3). We see that although the vector field
describes qualitatively the direction of trajectories in the phase portrait of our system, it does not give
us information on convergence/divergence of trajectories, thus we cannot determine the attractors of our
system, which is crucial for our study. However, as we will see in chapter 6 we can elaborate the vector
field based methods and in many cases will be able to obtain convergence/divergence information using
the so-called graphical Jacobian approach.

But in order to derive this approach we need to understand how to find attractors of a general non-linear
system (5.1) using an analytical approach. For that we need to establish the relation of the general
non-linear system (5.1) and the general linear system (4.1) that we studied in chapter 4.

5.2 Linearization of a system: Jacobian

Consider a general system of two differential equations:
{ dx

dt = f (x,y)
dy
dt = g(x,y)

(5.6)

In this section we will show that close to equilibrium point the phase portrait of this general non-linear
system (5.6) can be found from the solution of the linear system (4.1) that we studied in chapter 4. As
a consequence we will get six possible types of equilibria, that are: saddle, non-stable and stable node,
non-stable and stable spiral, and a center.

Our main tool here will be a formula (5.7) for the approximation of function of two variables f (x,y)
around point (x∗,y∗) which we derived in section 2.4:

f (x,y)≈ f (x∗,y∗)+(∂ f/∂x)(x− x∗)+(∂ f/∂y)(y− y∗) (5.7)

where ∂ f/∂x and ∂ f/∂y are the values of the partial derivatives at the point (x∗,y∗), i.e. they are just
numbers.

We will apply this formula to approximate the functions f (x,y) and g(x,y) of our system (5.6) and later
solve the approximated system and find the phase portraits close to the equilibrium.
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Let us start the derivation. Assume that system (5.6) has an equilibrium point at (x∗,y∗). This means (see
(5.4)) that: {

f (x∗,y∗) = 0
g(x∗,y∗) = 0 (5.8)

Let us approximate f (x,y) close to the equilibrium using the formula (5.7):

f (x,y)≈ f (x∗,y∗)+(∂ f/∂x)(x− x∗)+(∂ f/∂y)(y− y∗)

As we assumed (x∗,y∗) is an equilibrium, i.e. f (x∗,y∗) = 0 and we get

f (x,y)≈ (∂ f/∂x)(x− x∗)+(∂ f/∂y)(y− y∗) (5.9)

A similar approach for g(x,y) yields:

g(x,y)≈ (∂g/∂x)(x− x∗)+(∂g/∂y)(y− y∗) (5.10)

If we replace the right hand sides of (5.6) by their approximations (5.9), (5.10), we get the following
system: { dx

dt = (∂ f/∂x)(x− x∗)+(∂ f/∂y)(y− y∗)
dy
dt = (∂g/∂x)(x− x∗)+(∂g/∂y)(y− y∗)

(5.11)

The system (5.11) is simpler than the original system (5.6), as the partial derivatives in (5.11) are con-
stants (numbers, as they are evaluated at the equilibrium point x∗,y∗). So we can rewrite (5.11) as :

{ dx
dt = a(x− x∗)+b(y− y∗)
dy
dt = c(x− x∗)+d(y− y∗)

(5.12)

where a = ∂ f/∂x;b = ∂ f/∂y;c = ∂g/∂x,d = ∂g/∂y. We can simplify (5.12) even more. For that let us
introduce new variables:

u = x− x∗ v = y− y∗ (5.13)

were u,v are new unknown functions of t. If we substitute them into the right hand side of (5.12),we get:
{ dx

dt = au+bv
dy
dt = cu+dv

(5.14)

In order to substitute u and v into the left hand side of (5.14), note that u(t) = x(t)− x∗, i.e. du
dt =

dx
dt −0

(here dx∗
dt = 0 because x∗ is a constant). Similarly, dv

dt =
dy
dt . After replacing dx

dt by du
dt and dy

dt by dv
dt in

(5.14) we get: { du
dt = au+bv
dv
dt = cu+dv.

(5.15)

System (5.15) coincides with a general linear system (4.1) that we studied in chapter 4 and for which
we found six possible types of solutions resulting in six possible phase portraits: saddle, non-stable and
stable node, non-stable and stable spiral, and a center. However, how can we use the results of study of
system (5.15) for the study of the original system (5.6)? In order to derive (5.15) we made two steps: (1)
we used formula (5.7) for function approximation; (2) we changed variables x,y to u,v. Let us analyze
each of these two steps. (1) As we discussed earlier, formula (5.7) gives a good approximation of the
function f (x,y) only if x,y is close to the point of approximation x∗,y∗. So we can use the linear system
(5.15) for approximating the solutions of the non-linear system (5.6) only close to the equilibrium point
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(x∗,y∗). (2) about change of variables. Equation (5.13) gives the variables u,v via the variables x,y.
However, we can also solve the equations and find how x,y will be expressed in terms of u,v:

x = u+ x∗ y = v+ y∗ (5.16)

Using this expression we can draw the trajectories for our original variables x(t),y(t) if we know the
trajectories u(t),v(t) of the linearized system (5.15). Indeed, as the x coordinate of the trajectory equals
u plus number x∗, and the y coordinate equals v plus number y∗, the only thing what we need to do is
just to draw the trajectory u(t),v(t) and shift its x-coordinate by x∗ and the y-coordinate by y∗ units. As
we know in a general linear system (5.15) the phase portrait is centered around a point (0,0), therefore
all what we would need to do in order to draw the phase portrait of the non-linear system (5.6) close
to its equilibrium (x∗,y∗) is just to shift the phase portrait of the linear system (5.15) to a location of
equilibrium in non-linear system (5.6). If, for example, the linearized system (5.15) will have a stable
node type phase portrait, then a non-linear system (5.6) will have the same stable node point but around
an equilibrium (x∗,y∗) as shown in fig.5.4.

u

v

x

x*

y*

y

Figure 5.4:

Conclusion 10 The phase portrait of liner system (5.15) close to the origin (u = 0,v = 0) is similar to
the phase portrait of non-linear system (5.6) close the to equilibrium point (x∗,y∗). To draw the phase
portrait of non-linear system (5.6) close to equilibrium, we need to shift a phase portrait of linear system
(5.15) from the origin the equilibrium point (x∗,y∗).

To find the linearized system (5.15) we need to find the equilibrium point (x∗,y∗) and compute the
following four numbers: the values of derivatives of right hand sides of our system at this equilibrium:

a = ∂ f/∂x b = ∂ f/∂y c = ∂g/∂x d = ∂g/∂y

So, system (5.15) can be written as:

{
du
dt =

∂ f
∂x u+ ∂ f

∂y v
dv
dt =

∂g
∂x u+ ∂g

∂y v.
(5.17)

From coefficients of this system we can construct a matrix J that is called the Jacobian

J =

( ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)
(5.18)



5.3. DETERMINANT-TRACE METHOD FOR FINDING THE TYPE OF EQUILIBRIUM 77

Example Find qualitative phase portrait of system (5.3) close to a nontrivial equilibrium point (i.e. at
the equilibrium where x 6= 0,y 6= 0).

{ dx
dt = 3x(1− x)−1.5xy
dy
dt = 0.5xy−0.25y

Solution In section 5.1.2 we found that this system has three equilibria (0,0), (1,0), and (0.5,1). The
nontrivial equilibrium is (0.5,1). To find the Jacobian of our system we compute the partial derivatives
(5.18) and evaluate them at the equilibrium point. In our case f (x,y) = 3x(1− x)− 1.5xy; g(x,y) =
0.5xy−0.25y.

∂ f/∂x = 3− 6x− 1.5y at point (0.5,1) this derivative equals ∂ f/∂x = 3− 3− 1.5 = −1.5. Similarly:
∂ f/∂y =−0.75; ∂g/∂x = 0.5; ∂g/∂y = 0, hence the linearization of our system at point (0.5,1) is

{ du
dt =−1.5u−0.75v
dv
dt = 0.5u

or the Jacobian is:

J =

(
−1.5 −0.75
0.5 0

)
.

In order to find a phase portrait of this linear system we need to find eigen values of the Jacobian matrix
from the following characteristic equation (2.31):

Det
∣∣∣∣
−1.5−λ −0.75
0.5 0−λ

∣∣∣∣= (−1.5−λ)(−λ)+0.5∗0.75

= λ2 +1.5λ+0.375 = 0

Using ’abc’ formula we find that:

λ12 =
−1.5±

√
2.25−1.5
2

=
−1.5±

√
0.87

2
(5.19)

or, λ1 =−1.36 and λ1 =−0.138. Because both eigen values are real and negative we will have a stable
node and a phase portrait qualitatively similar to that in fig.5.4b.

5.3 Determinant-trace method for finding the type of equilibrium

In this section we derive a simple method for finding signs of eigen values and the type of equilibrium of
the linear system (4.1). The results will also be applicable for a general non-linear system (5.6), because,
as discussed in the previous section, the equilibrium type of a non-linear system can be found from its
linearization.

The eigen values of system (4.1) are the roots of the characteristic equation (2.31):

Det
∣∣∣∣

a−λ b
c d−λ

∣∣∣∣= 0, (5.20)

or:
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Det
∣∣∣∣

a−λ b
c d−λ

∣∣∣∣= (a−λ)(d−λ)− cb = λ2−λ(a+d)+ad− cb = 0

Let us express the last equation in a slightly different form using the following definition:

Definition 8 The trace of the matrix
(

a b
c d

)
is trA = a+d.

The determinant of the matrix A is detA = ad− cb

So we can rewrite the characteristic equation using the definition of the trace and the determinant as
follows:

λ2− trAλ+detA = 0 (5.21)

We see that although the original system depends on four parameters a,b,c,d the characteristic equation
depends only on two parameters trA and detA, thus if we know the determinant and the trace of our
system we can find the eigen values and the type of the equilibrium of the system. Indeed, from (5.21)
we can easily find that the eigen values are:

λ1,2 =
trA±

√
D

2
where D = (trA)2−4detA (5.22)

Roots of the equation (5.22) are as the roots of any quadratic equation, connected in the following way
to the coefficients of the equation:

λ1 +λ2 = trA (5.23)

λ1 ∗λ2 = detA (5.24)

To prove the properties (5.23) and (5.24), just note that if λ1 and λ2 are the roots of a quadratic (5.21),
then it can be written as: λ2− trAλ+detA = (λ−λ1)((λ−λ2). The direct computation yields:

λ2− trAλ+detA = (λ−λ1)((λ−λ2)
or
λ2− trAλ+detA = λ2−λ1λ−λ2λ+λ1λ2
or
λ2− trAλ+detA = λ2− (λ1 +λ2)λ+λ1λ2

If we now compare the left and the right hand sides of the last equation we will get both properties (5.23)
and (5.24).

Let us start classification.

1. If detA < 0, then D = (trA)2− 4detA > 0, so we have real roots. From (5.24) we conclude that
their product is negative, i.e. roots have different signs, i.e. λ1 < 0,λ2 > 0, or λ1 > 0,λ2 < 0 and
we have a saddle point.

2. If detA > 0, then D = (trA)2−4detA can be negative as well as positive. This means the roots can
be real, or complex. Let us consider the case of real roots first, i.e.

D = (trA)2−4detA≥ 0 (5.25)
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If (5.25) holds, the roots are real. Next, let us use the property λ1 ∗ λ2 = detA. In the case of
detA > 0, the product of the roots is positive, i.e. the roots have the same sign. They can be
both positive, or both negative. The sign of the roots can be found from the trace of the matrix
(λ1 +λ2 = trA). When trA > 0, then λ1 > 0, and λ2 > 0 and we have a non-stable node. When
trA < 0, λ1 < 0 and λ2 < 0 and we have a stable node. Let us formulate it as a separate case:

3. If detA > 0, D > 0 and trA < 0 the equilibrium is a stable node.

Let us put this information into a graph (fig.5.5). On this graph let us use trA as the x-axis and
detA as the y-axis. Case 1 of a saddle point then corresponds to the lower half plane (region 1).
The line (5.25), which separates real and complex roots, is the parabola given by detA = (trA)2/4,
or y = x2/4. Real roots are below this line. Therefore, in region 2, where trA > 0, we have case 2
of a non-stable node. In region 3 trA < 0 and we have case 3 of a stable node.

4. If detA > 0, and D < 0, we have complex roots. In accordance with (5.23) and (4.27) they are:

λ1,2 =
trA
2
± i
√
−D
2

Hence, Reλ1,2 = trA/2. From this we immediately see that if trA > 0, we have a non-stable spiral
(region 4).

5. If detA > 0, D < 0 and trA < 0, we have a stable spiral (region 5).

6. The last case of a center point appears when Reλ1,2 = trA/2 = 0, or when trA = 0 and detA > 0.
In our graph is it the upper part of the detA axis (region 6)

center

saddle

node
stable non−stable

   node

non−stable spiralstable spiral

tr A

det A

5

1

23 4
6

D=0

Figure 5.5:

Let us apply this method for several examples:

Example. Find the equilibrium type for the following systems:

a)
( dx

dt
dy
dt

)
=

(
1 2
3 4

)(
x
y

)
; b)

( dx
dt
dy
dt

)
=

(
4 1
1 2

)(
x
y

)
;

c)
( dx

dt
dy
dt

)
=

(
−2 3
−2 1

)(
x
y

)
; d)

( dx
dt
dy
dt

)
=

(
1 −1
2 −1

)(
x
y

)
;
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Solution Our plan is to find detA, trA for the corresponding matrices and make a conclusion.

a) The matrix is A =

(
1 2
3 4

)
; trA = 1+4 = 5; detA = 1∗4−2∗3 =−2. Therefore we have case 1,

hence the system has a saddle point.

b) The corresponding matrix is A =

(
4 1
1 2

)
; trA = 4+2 = 6; detA = 4∗2−1∗1 = 7. As detA > 0

we need to check that the roots are real. We have D = (trA)2− 4detA = 6 ∗ 6− 4 ∗ 7 = 36− 28 > 0,
hence the roots are real and we have case 2, hence the system has a non-stable node.

c) trA =−2+1 =−1; detA =−2+6 = 4; D = (trA)2−4detA = 1−4∗4 =−15 < 0, we have complex
roots and we are in region 5 and have a stable spiral

d) trA = 1−1 = 0; detA =−1+2 = 1, so we have case 6 and we have a center point, or oscillation in
our system.

5.4 Exercises

Exercises sec.5.1

1. (A) Find equilibria of the following systems
{ dx

dt = f (x,y)
dy
dt = g(x,y)

(see definition in section 5.1.2).

(B) Find the following partial derivatives at each equilibrium point (∂ f
∂x ,

∂ f
∂y ,

∂g
∂x ,

∂g
∂y ).

(a)
{ dx

dt =−4y
dy
dt = 4x− x2−0.5y

(b)
{ dx

dt = 9x+ y2

dy
dt = x− y

(c)
{ dx

dt = 2x− xy
dy
dt =−y+ y2x

(d)
{ dx

dt = (1− x−3y)x
dy
dt = (1−2x−2y)y

(Hint: See an example of solution in section 11.0.2).

2. Find equilibria of the following Lotka Volterra model with competition in the prey population.
Determine for which parameter values all equilibria are non-negative.

{
dN/dt = aN− eN2−bNP
dP/dt = cNP−dP a,b,c,d,e > 0

3. Protein synthesis depends on DNA transcription (a) making mRNA molecules (M) and translation
(c) of mRNA into proteins (P). Some proteins inhibit the transcription of their own mRNA ( 1

1+P ).
mRNA and proteins are degraded at rates b and d, respectively. This process gives the following
of two differential equations. Find equilibria of this model.

{
dM/dt = a

1+P −bM P,M ≥ 0
dP/dt = cM−dP a,b,c,d > 0

4. Mathematical epidemiology also makes use of simple ODE models. One of these models describes
the number of susceptible individuals (S) and infected individuals (I). Individuals are born at rate
(B), and die at rate (µ). Susceptible individuals can become infected when they come into contact
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with infected individuals (−βSI). Once infected, an individual has a certain death rate (α); this
may be different from the death rate of non-infected individuals. This process can therefore be

modeled by the following equations:
{

dS/dt = B−βSI−µS
dI/dt = βSI−αI B,α,β,µ > 0

Find equilibria of this model. Determine for which parameter values all equilibria are non-
negative.

Exercises sec. 5.2 and 5.3

5. Find the type of equilibria using the det-tr method. Determine the stability of the equilibrium.

(a)
{ dx

dt = 3x+ y
dy
dt =−20x+6y

(b)
{ dx

dt = 2x+ y
dy
dt = 2x−10y

(c)
{ dx

dt = 2x+ y
dy
dt = 5x−2y

(d)
{ dx

dt = x+10y
dy
dt =−10x− y

6. Consider the following model for the algae population:
{ dx

dt = 2x(1− y) x≥ 0;
dy
dt = 2− y− x2 y≥ 0.

(a) Find equilibria

(b) Find the general expression for the Jacobian of this system

(c) Determine type of each equilibrium using det-tr method

(d) Draw qualitative local phase portraits around each equilibrium point

7. Consider the following biological model:

{
de/dt = b∗ e− e3−g
dg/dt = e−g b≥ 0

(5.26)

• For which values of parameter b the system has only one equilibrium?

• Determine stability and type of this equilibrium in found parameter range (in which system
(5.26) has only one equilibrium).

8. Study the Lotka-Volterra model for a predator-prey system:
{ dN

dt = aN−bNP
dP
dt = cNP−dP

here N denotes the prey population, P denotes the predator population and a> 0,b> 0,c> 0,d > 0
are parameters

(a) Find the nontrivial equilibrium of the system (i.e. an equilibrium where N 6= 0,P 6= 0).

(b) Find the linearization of the system at this point (i.e. the Jacobian matrix)

(c) Determine the type of the equilibrium

(d) Sketch the phase portrait around this equilibrium. Which kind of dynamics do we expect
here?

Additional exercises

9. Consider the system: dx
dt = x+4y+ ex−1; dy

dt =−y− y∗ ex

(a) Check that (0,0) is an equilibrium point of the system
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(b) Find the general expression for the Jacobian of this system

(c) Find the Jacobian at the point (0,0)

(d) Write the linearization of the system close to the equilibrium (0,0)

10. Find the equilibria of the following systems. Compute the Jacobian at the equilibria points. Deter-
mine type of each equilibrium using det-tr method. Draw qualitative local phase portraits around
each equilibrium point.

(a)
{ dx

dt = y2−3x+2
dy
dt = x2− y2 (b)

{ dx
dt = y
dy
dt =−x+ x3

11. Revisit solutions of problems 1. Use found equilibria and partial derivatives at these equilibria
points to determine type of each equilibrium using det-tr method. Draw qualitative local phase
portraits around each equilibrium point.

12. Consider a modification of the Lotka-Volterra model, which includes competition in the prey pop-

ulation (−eN2):
{ dN

dt = aN− eN2−bNP
dP
dt = cNP−dP

, where the parameters a,b,c,d,e> 0 and the variables

N ≥ 0, P≥ 0.

(a) Find all equilibria of this system.

(b) Compute the Jacobian at each equilibrium point.

(c) At which parameter values do we have a non-trivial equilibrium (i.e. an equilibrium at which
both N and P are positive). Find stability of this equilibrium.

13. Consider the following model for cardiac tissue:

{
de/dt =−e(e−a)(e−1)−g 0 < a < 1
dg/dt = εe ε > 0 (5.27)

Here the variable e accounts for the transmembrane potential, the variable g accounts for the
refractory period and a,ε are the parameters.

The shape of the action potential in cardiac tissue is an important characteristic of myocardium. If
the recovery of the transmembrane potential shows oscillation as in fig.5.6b. it can cause dangerous
cardiac arrhythmias. From a mathematical point of view the oscillations in fig5.6b occur when
system (5.27) has an equilibrium point which is a stable spiral. Monotonous recovery occurs when
this equilibrium is a stable node.

a b

Figure 5.6: The monotonous (a) and oscillatory recovery (b) in an excitable medium

Determine for which parameter values we will have situation fig.5.6a and for which parameter
values we will have situation fig.5.6b.



Chapter 6

Graphical methods to study systems of
differential equations

In the first section of this chapter we will start from the vector field of a general non-linear system
introduced in section 5.1.3, and find how we can approximate the vector field by the so-called null-cline
method, without using a computer. Then, in section 6.2, we will show that the null-clines can be used
not only for vector field approximation but also for determining the type of an equilibrium point without
explicit computation of the Jacobian of the system.

6.1 Null-clines

We introduced the vector field in section 5.1.3, where we showed that for a general 2D system
{ dx

dt = f (x,y)
dy
dt = g(x,y)

(6.1)

the direction of the trajectories on the phase portrait will be along the vector ~v with the components
( f (x,y),g(x,y)). Thus, to draw the vector field of a particular system we need to evaluate the values of
the functions ( f (x,y),g(x,y)) in many points which usually requires using a computer. In this section
we will develop a so-called method of null-clines, which will allow us to sketch a qualitative picture
of the vector field analytically. The main idea here is similar to what we did in the 1D case, where we
have represented the derivative dx

dt by arrows of two types: ’→’ for dx
dt > 0 and ’←’ for dx

dt < 0. In 2D
the vector field has two components V = (vx,vy) = (dx

dt ,
dy
dt ). Each of these components dx

dt ,
dy
dt can be

positive, or negative. Therefore, we can have the following four cases shown fig.6.1. (Note, that we use
different line types there that will be important in the future).

I II III IV
dy/dt>0

dy/dt<0 dy/dt<0dx/dt>0 dx/dt<0 

dx/dt>0 dx/dt<0 dy/dt>0

Figure 6.1:
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The method of null-clines represents the vector field using these four cases. The main idea behind this
method is the following. If we compare cases I and II we see that they differ by the sign of the dx

dt
derivative: for case I dx

dt > 0 and for case II dx
dt < 0. Therefore these cases are separated by the boundary

where dx
dt = 0 (fig.6.2a). We know that for system (6.1) dx

dt = f (x,y), therefore the boundary between
cases I and II is given by the condition

f (x,y) = 0 (6.2)

I

x’>0 y’>0

II

x’<0 y’>0

x’=f(x,y)=0

III

x’>0 y’<0

I

x’>0 y’>0

y’=g(x,y)=0

a b
Figure 6.2:

Geometrically equation (6.2) gives a graph of one or more lines in the Oxy-plane (see section 1.4). Note
that at this line the horizontal component of the vector field is zero, therefore the vector is vertical.

Similarly, the transition from case I to case III occurs when dy
dt = 0 (fig.6.2b). As we know for the system

(6.1) dy
dt = g(x,y), hence the separation line in this case is given by the equation:

g(x,y) = 0 (6.3)

and the direction of the vector field at this line is horizontal.

Equation (6.3) will give us not only the boundary between cases I and III but also a boundary between
cases II and IV, as the transition between cases II and IV also occurs when dy

dt = 0. In general equations
(6.2),(6.3) give two (or more) lines on the Oxy-plane, which separate the plane into several regions with
different directions of vectors (cases I-IV).

These lines are called null-clines.

Definition 9 The x-null-cline (or dx
dt = 0 null-cline) is the set of points satisfying the condition f (x,y) =

0. The y-null-cline (or dy
dt = 0 null-cline) is the set of points satisfying the condition g(x,y) = 0.

To use the method of null-clines it is useful to note that at the x-null-cline the x-component of the vector
changes its sign, and at the y-null-cline the y-component of the vector changes its sign. To use this
rule effectively we will always denote the vector field components using lines of different types: the
horizontal component as a dashed line and the vertical component as a solid line. Let us use these ideas
and formulate a plan for finding the vector field using null-clines.
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Plan of null-cline analysis for system (6.1)

We assume that on the Oxy-plane the x-axis is the horizontal axis and the y-axis is the vertical axis.

1. Draw dx
dt = 0 null-clines from the equation f (x,y) = 0 using a dashed line and dy

dt = 0 null-clines
from the equation g(x,y) = 0 using a solid line.

2. Choose a point in one of the regions in the x,y plane and find the x and the y -components of the
vector field. Use the dashed line for the x component and the solid line for the y component. For
finding the directions use the following rule: if f (x,y) > 0 the x component is directed as ’→’, if
f (x,y) < 0 it is directed as ’←’; if g(x,y) > 0 the y-component is directed as ↑, g(x,y) < 0 it is
directed as ↓.

3. Find the vector field in the adjacent regions using the following rule:

(a) change the direction of the dashed component of the vector field if in order to get to the
adjacent region you cross the dashed null-cline

(b) change the direction of the solid component of the vector field if in order to get to the adjacent
region you cross the solid null-cline

(c) show the direction of the vector field on the null-clines.

Note, that instead of dashed and solid lines you can use lines of different colors. Then the last step of
this plan would be: change the direction of the component of the same color as the color of the null-cline
which we cross to get to the adjacent region.

Note, that although this plan works good in most of cases, there are some situations when components
of the vector field do not change their sign at the corresponding null-cline. These are special so-called
degenerate cases (exceptions). We will not consider them in our course.

Example Find the vector field of the following system using null-clines.

{ dx
dt = 3x(1− x)−1.5xy
dy
dt = 0.5xy−0.25y

(6.4)

Solution. We follow our plan as follows

1. The dx
dt = 0 null-clines are given by the equation f (x,y) = 0, i.e. 3x(1− x)− 1.5xy = x(3− 3x−

1.5y) = 0. This equation has two solutions: x = 0 (the vertical line which coincides with the y-
axis) and y = 2− 2x which is a straight line with the negative slope −2 which goes through the
point (2,0). The graphs are shown using dashed lines in fig.6.3. The dy

dt = 0 null-clines are given
by the equation g(x,y) = 0, i.e. 0.5xy−0.25y = y(0.5x−0.25) = 0, which also has two solutions:
y = 0 (horizontal line which coincides with the x-axis) and x = 0.5 (vertical line through the point
x = 0.5). Graphs are shown by solid lines in fig.6.3.

2. We find that at point (2,2) dx
dt = 3∗2∗(1−2)−1.5∗2∗2=−12< 0 and dy

dt = 0.5∗2∗2−0.25∗2=
1 > 0, hence the direction of the dashed arrow is to the left ’←’ and of the solid arrow is upward
↑.



86CHAPTER 6. GRAPHICAL METHODS TO STUDY SYSTEMS OF DIFFERENTIAL EQUATIONS

2

0.5 1

x

y

0

Figure 6.3:

3. Now we complete the picture. For example, to get into the region to the left from point (2,2) we
cross the solid line, thus we change the direction of the solid component here. Similarly for the
other regions. We get the picture as in fig.6.3. Finally we show the vector field on the null-clines.

We see that the vector field in fig.6.3 is a good approximation of the flow in fig.5.3. We also see that
attractor (0.5,1) is a special point in fig.6.3: the point of intersection of the x and y null-clines. This is
not a coincidence. If we compare the conditions for finding the equilibrium point (5.4) and equations for
null clines (6.2), (6.3), we see that the first equation for finding equilibria f (x,y) = 0 is also the equation
for x null-cline and the second equation for finding the equilibrium point g(x,y) = 0, is the equation for
the y-null-cline. Thus, the solution of system (5.4), which gives the points satisfying both equations,
gives the points which belong to both null-clines, i.e. the points of intersection of the null-clines. So we
found that:

Conclusion 11 Equilibria are the points of intersection of the x and y-null-clines.

Note that this definition applies points of intersection of different null-clines only. For example intersec-
tion of null clines of the same type in fig.6.3 at points (0.5,0) and (0,2) do not give equilibria of system
(5.3), while intersection of the different null-clines at points (0,0),(1,0), (0.5,1) give the equilibria of this
system.

Our next step will be to study how can we apply the null-clines for finding the types of equilibrium.

6.2 Graphical Jacobian

The method which we present here allows, in a number of cases, to find the type of an equilibrium
from the null-clines of the system, i.e., even without computation of partial derivatives of the Jacobian
in the equilibrium. The main idea behind this method can be seen from the scheme in Fig.6.4. Let us
consider an equilibrium point (x∗,y∗) and two close points: one located to the right, with the coordinates
(x∗+ h,y∗), the other upward with the coordinates (x∗,y∗+ h). Because we assume that (x∗,y∗) is an
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equilibrium point, f (x∗,y∗) = and g(x∗,y∗) = 0 (see (5.4)). We can approximate the partial derivative
∂ f
∂x at (x∗,y∗) using a formula similar to (1.9) as : ∂ f

∂x ≈
f (x∗+h,y∗)− f (x∗,y∗)

h , but because f (x∗,y∗) = 0, we

get ∂ f
∂x ≈

f (x∗+h,y∗)
h . If we apply the same approach for all derivatives constituting the Jacobian at the

equilibrium point (x∗,y∗) we get:

J =

( ∂ f
∂x ≈

f (x∗+h,y∗)
h

∂ f
∂y ≈

f (x∗,y∗+h)
h

∂g
∂x ≈

g(x∗+h,y∗)
h

∂g
∂y ≈

g(x∗,y∗+h)
h

)
(6.5)

This approximation will be better if points (x∗+h,y∗) and (x∗,y∗+h) are closer to the equilibrium point,
i.e., if h is small. It turns out that in many cases the exact values of the derivative will not be important for
us and we will be able to find the equilibrium type from just the sign of the components of the Jacobian.
From (6.5) it is clear that the sign of the Jacobian components is the same as the sign of the functions at
the appropriate points, e.g. the sign of ∂ f

∂x is the same as the sign of f (x∗+h,y∗), etc. Let us now recall,
that the sign of the functions f (x,y),g(x,y) is represented on the vector field of our system. In fact, ’→’
means that dx

dt > 0 and occurs at the points where f (x,y)> 0, the ’↑’ means that dy
dt > 0 and occurs at the

points where g(x,y) > 0 (see fig.6.2), etc. Thus from the vector field we can easily determine the sign
of the components of the Jacobian matrix. For example, the negative direction of the x-component in
fig.6.4a will mean that f (x∗+h,y∗)< 0 and hence ∂ f

∂x < 0, the positive direction of the y-component in
fig.6.4a will mean that g(x∗+h,y∗) > 0 and thus ∂g

∂x > 0. Similarly, in Fig.6.4b the vector field at point
(x∗+h,y∗) is vertical, thus ∂g

∂x > 0 and ∂ f
∂x = 0.

x

y y

x

(x*,y*)         (x*+h,y*)         

a b

f(x*+h,y*) =0        

(x*+h,y*)         (x*,y*)         

g(x*+h,y*) >0        
f(x*+h,y*) <0        

dx/dt=f(x*+h,y*)
dy/dt

dx/dt   

(x*+h,y*)         

(x*,y*+h)         

x

y

(x*,y*)         

dy/dt=g(x*,y*+h)

Figure 6.4:

We will formulate this result as the following conclusion:

Conclusion 12 The sign of the x and y vector field components to the right from the equilibrium point
give the sign of ∂ f

∂x and ∂g
∂x components of the Jacobian. The sign of the x and y vector field components

upward from the equilibrium point give the sign of ∂ f
∂y and ∂g

∂y components of the Jacobian matrix J =( ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)
at this equilibrium point (fig.6.4c).

Three notes on the application of this rule:

• The testing points must be exactly horizontal (x∗+ h,y∗) and exactly vertical (x∗,y∗+ h) with
respect to the equilibrium point.
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• Testing points should be as close as possible to the equilibrium and should never cross a null cline
when going from the equilibrium. (Putting the testing point to the right from the dashed line in
fig.6.4a will be wrong).

• If a null cline is exactly horizontal or exactly vertical then one of the corresponding derivatives
will be zero. ( In fig.6.4b,∂ f

∂x = 0; ∂g
∂x > 0 ).

y y yy’=0

x’=0

x’=0

y’=0 y’=0

a b c
x x x

x’=0

Figure 6.5:

Examples. Let us consider several examples of the application of this graphical approach for null-clines
presented in Fig.6.5 and Fig.6.6. On all these figures the testing points are marked by filled circles.

From fig.6.5a we find the following components of the Jacobian: J =

(
−α −β
+γ −δ

)
, where α,β,γ,δ

stand for unknown positive numbers. Thus we see that detJ = αδ+βγ > 0, and trJ =−α−δ < 0, thus
(see fig.5.5) we have a stable equilibrium (stable node or stable spiral). On the basis of these data we
cannot say whether this equilibrium is a node or a spiral as we cannot compute whether the discriminant
of the Jacobian is positive or negative, as this depends on the exact values of the partial derivatives.

From fig.6.5b we find: J =
(
−α 0
0 −δ

)
. Thus detJ = αδ > 0, trJ =−α−δ < 0 and D = tr2−4Det =

(α+δ)2−4αδ = α2 +2αδ+δ2−4αδ = α2−2αδ+δ2 = (α−δ)2 > 0, thus we have a stable node.

From fig.6.5c we find: J =

(
+α 0
0 −δ

)
. Thus detJ =−αδ < 0, and we have a saddle.

Figure 6.6:

From fig.6.6a we find: J =

(
+α +β
+γ −δ

)
, hence detJ =−αδ− γβ < 0, and we again have a saddle.
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From fig.6.6b we find: J =

(
+α +β
−γ −δ

)
. detJ =−αδ+ γβ, trJ = α−δ. Because we do not know the

values of the coefficients α,β,γ,δ, just their signs, we do not know if the detJ and trJ are positive or
negative, thus we cannot determine the equilibrium type in this case using the graphical Jacobian.

Finally from 6.6c we find: J =

(
+α +β
+γ +δ

)
. Thus detJ = αδ− γβ, trJ = α+δ > 0. Again we cannot

determine the sign of the detJ, but positive trJ implies that the equilibrium will be unstable. We do not
know its type: non-stable node, non-stable spiral and a saddle are all possible.

We see that the method of graphical Jacobian is a useful tool for finding the equilibrium type from the
vector field, but sometimes it is not sufficient and we need to know not only the sign but also the values
of the Jacobian coefficients.

6.3 Exercises

1. Sketch the phase portraits of the following systems using null-clines. Try to find the type of
equilibrium using the graphical Jacobian (section 6.2). If you are unable to find the equilibrium
type using the graphical Jacobian, find it using the method of sec.5.3. Sketch a qualitative phase
portrait (without computation of eigen values and eigen vectors).

(a)
{ dx

dt = 3x+ y
dy
dt =−x− y

(b)
{ dx

dt = x+2y
dy
dt =−2x−2y

(c)
{ dx

dt = y
dy
dt = 3x

(d)
{ dx

dt = x−4y
dy
dt = x+ y

2. The figure below shows the null-clines of three systems of two non-linear differential equations

y

x

a b c

y y

x x

(a) Complete the figures by showing the direction of the vector field in all regions on the plane
and on the null-clines.

(b) Mark the equilibria and find their types using the graphical Jacobian (if possible).
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3. Algae model using graphical Jacobian (see also problem 6 from section 5.4):
{ dx

dt = 2x(1− y) x≥ 0;
dy
dt = 2− y− x2 y≥ 0.

(a) Sketch the vector field for the Algae system using null-clines.

(b) Find equilibria.

(c) Find the type of each equilibrium using the graphical Jacobian and draw qualitative local
phase portraits.

4. Lotka Volterra model using graphical Jacobian (see also problem 8 from section 5.4):
{

dN/dt = aN−bNP N ≥ 0
dP/dt = cNP−dP P≥ 0 a,b,c,d,e > 0

(a) Sketch the vector field of the system using null-clines.

(b) Find equilibria.

(c) Find the type of each equilibrium using the graphical Jacobian and draw qualitative local
phase portraits.

(d) Does the vector field change if we change the values of parameters a,b,c,d?

Additional exercises

5. Find the vector fields of these systems using null-clines. Find equilibria. Determine the type of
each equilibrium using the graphical Jacobian and draw qualitative local phase portraits.

(a)
{ dx

dt = x−3y
dy
dt = x+ y

(b)
{ dx

dt = y
dy
dt =−x

(c)
{ dx

dt = 9x+ y2

dy
dt = x− y

(d)
{ dx

dt = y2− x2

dy
dt = y−1



Chapter 7

Plan of qualitative analysis and examples

7.1 Plan

Let us now formulate a plan to qualitatively study a system of two differential equations with two vari-
ables and consider several examples.

We study the system:

{ dx
dt = f (x,y)
dy
dt = g(x,y)

(7.1)

Our main aim is to plot the phase portrait of this system and then predict its dynamics. Based on methods
which we have developed we will do it in two steps:

I Null-cline analysis

II Jacobian analysis

Where the Jacobian analysis can be either performed using the determinant-trace method from section
5.3, or using the graphical Jacobian from sec.6.2. Note, that the determinant-trace method always give
us a definitive answer, while the graphical Jacobian method sometimes fails. In more details:

Null-cline analysis

We assume that on the Oxy-plane the x-axis is the horizontal axis and the y-axis is the vertical axis.

1. Draw the dx
dt = 0 null-clines from the equation f (x,y) = 0 using dashed lines and the dy

dt = 0 null-
clines from the equation g(x,y) = 0 using solid lines.

2. Choose a point in one of the regions on the x,y plane and find the vector field for the x-component.
Denote the x component as a dashed ’→’ if f (x,y)> 0 and as a dashed ’←’ if f (x,y)< 0.

3. Find the vector field for the y-component at the same point. Denote the y component as a solid ↑
if g(x,y)> 0 and as a solid ↓ if g(x,y)< 0

91
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4. Find the vector field in the adjacent regions using the following rule:

(a) change the direction of the dashed component of the vector field if to get to the adjacent
region you cross the dashed null-cline.

(b) change the direction of the solid component of the vector field if to get to the adjacent region
you cross the solid null-cline.

(c) show the direction of the vector field on the null-clines close to the equilibrium

Jacobian analysis using the determinant-trace method

1. Find equilibria from equations: {
f (x,y) = 0
g(x,y) = 0 (7.2)

2. For each equilibrium (x∗,y∗), find the Jacobian at that equilibrium point

J =

(
∂ f/∂x ∂ f/∂y
∂g/∂x ∂g/∂y

)

(x∗,y∗)
(7.3)

Note: Do not forget to substitute x = x∗,y = y∗ into the Jacobian.

3. Determine the type of each equilibrium (x∗,y∗). For this compute

detJ =

(
∂ f
∂x
∗ ∂g

∂y
− ∂ f

∂y
∗ ∂g

∂x

)

(x∗,y∗)
(7.4)

trJ =

(
∂ f
∂x

+
∂g
∂y

)

(x∗,y∗)
(7.5)

D = (trJ)2−4detJ (7.6)

To find the type of equilibrium use fig.5.5, or the following list:

(a) If detJ < 0; the point is a saddle point

(b) If detJ > 0, trJ > 0,D≥ 0; the point is a non-stable node

(c) If detJ > 0, trJ < 0,D≥ 0; the point is a stable node

(d) If detJ > 0, trJ > 0,D < 0; the point is a non-stable spiral

(e) If detJ > 0, trJ < 0,D < 0; the point is a stable spiral

(f) If detJ > 0, trJ = 0; the point is a center

4. Draw local phase portraits using both knowledge on the equilibrium type and the vector fields
obtained using null-cline analysis

5. Connect local phase portraits to get the global picture and show attractors and their basins of
attraction.

Jacobian analysis using the graphical Jacobian
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1. For each equilibrium point (point of intersection of different null-clines) choose two points, one of
which is located to the right and the other upward from the equilibrium. Find the components of
the Jacobian using the following rule: the sign of the x component of the vector field to the right of
the equilibrium point gives the sign of ∂ f

∂x and the sign of the y component of the vector field to the
right of the equilibrium point gives the sign of ∂g

∂x . The sign of the x and y vector field components
upward of the equilibrium point give the sign of ∂ f

∂y and ∂g
∂y .

2. Note that if one of the components is zero, then the corresponding derivative of the Jacobian will
be zero. The latter can happen if at a given equilibrium point one or both null-clines are exactly
horizontal or exactly vertical.

3. Try to compute the sign of the determinant and of the trace of the Jacobian and try to identify the
type of equilibrium from fig.5.5.

4. If the type of equilibrium cannot be identified, use the analytical determinant-trace method formu-
lated above.

5. Draw local and then global phase portraits of the system and make predictions about its dynamics.

7.2 Examples

Example 1 Study system (5.3), using null-clines and the determinant-trace method.

{ dx
dt = 3x(1− x)−1.5xy
dy
dt = 0.5xy−0.25y

(7.7)

Solution We have made studies of different aspects of this model throughout the reader, so let us collect
the information.

I.Null-cline analysis.

The null-clines of this system are given in fig.6.3. We repeat it here in fig7.1a:

2

0.5 1

x

y

0 1

y

0.5

1

1
x

Figure 7.1:

II.Jacobian analysis:
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1. Equilibria. In example eq.(5.5) we found that this system has three equilibria points: (0,0),(1,0)
and (0.5,1).

2. Jacobian. We compute the Jacobian as: ∂ f/∂x= 3−6x−1.5y; ∂ f/∂y=−1.5x; ∂g/∂x= 0.5y; ∂g/∂y=

0.5x−0.25, thus: J =

(
3−6x−1.5y −1.5x
0.5y 0.5x−0.25

)
.

Let us find equilibria types from the Jacobian.

At point (0,0) the Jacobian is: J1 =

(
3 0
0 −0.25

)
, detJ1 = 3∗ (−0.25)< 0, thus this is a saddle

point.

At the point (1,0) the Jacobian is: J2 =

(
−3 −1.5
0 0.25

)
, detJ2 = (−3) ∗ 0.25 < 0, thus this is a

saddle point.

At the point (0.5,1) the Jacobian is: J3 =

(
−1.5 −0.75
0.5 0

)
, detJ3 =(−1.5)∗0−0.5∗(−0.75)<

0.375, thus we need to find trJ3 =−1.5 and D= (−1.5)2−4∗0.375= 0.75> 0 thus this is a stable
node.

3. Local phase portraits are presented in fig.7.1b. From the null-cline analysis we find the approxi-
mate locations of the manifolds of the saddle points and the direction of the trajectories around the
stable node.

4. Global picture. There are no general rules to draw the global picture. However in the case of
fig.7.1b we can expect that the non-stable manifold of the saddle point at (0,0) will end at the
other saddle point (1,0), the non-stable manifold of the saddle point (1,0) as well as most of other
trajectories should go to the stable node at (0.5,1) as this is the only attractor here. Thus we get
the phase portrait presented in fig.7.1c. We see that we will have a stable global attractor with the
basin of attraction the whole region x > 0,y > 0 (except two axes x = 0; y = 0).

We see that the phase portrait which we got as a result of our study is qualitatively the same as the phase
portrait of this system obtained using a computer (see fig.5.1b).

Let us try to apply for this problem the method of the graphical Jacobian

Example 2 Study the same system (7.7), using the graphical Jacobian method.

Solution From fig.7.1a we find in the following components of the Jacobian:

1. Point (0,0), J =

(
+α 0
0 −δ

)
. Thus detJ =−αδ < 0, thus we have a saddle.

2. Point (1,0), J =

(
−α −β
0 +δ

)
. Thus detJ =−αδ < 0, thus we have a saddle.

3. Point (0.5,1), J =

(
−α −β
+γ 0

)
. Thus detJ = γβ > 0, trJ = −α < 0, thus we have a stable

equilibrium (stable node or stable spiral).

4. Drawing of the local and global phase portraits is exactly the same as with the previous method
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Thus we see that in this case we were able to solve the problem completely using the graphical Jacobian
method. The only difference with the determinant-trace method is that we were not able to say that the
stable equilibrium is a node. However, this has almost no consequences for the phase portrait.

7.3 Exercises

1. Complete the vector field approximations for the null-clines shown in fig7.2a,b,c. Mark equilibria
and determine their type using the graphical Jacobian method. Draw local and then global phase
portraits. Try to describe the dynamics of the system, by saying what happens with the variables x
and y in the course of time.

cx x

yy

ba
x

y

Figure 7.2:

2. Draw the phase portrait of the following systems of differential equations. Explain their dynamics.

(a)
{ dx

dt = x(1− x− y)
dy
dt = y(1−2x)

x≥ 0; y≥ 0

(b)
{ dN

dt = 2N−NP−N2

dP
dt = 3P−2NP−P2 N ≥ 0; P≥ 0

3. In theoretical biology the following model has been used to study mRNA (M) protein (P) interac-
tion: {

dP/dt = bM−dPP a,b,d > 0
dM/dt = a K2b

K2+P2 −dMM P > 0;M > 0
(7.8)

Study this system using the graphical Jacobian approach, i.e. draw null-clines, mark equilibria
as points of intersection of the null-clines, determine stability of these equilibria and sketch a
qualitative phase portrait.

4. The following equations describe the dynamics of predator (P) and prey (N) populations:





dN/dt = rN(1− N
K )−bNP N ≥ 0 P≥ 0

dP/dt = bNP−2bP b≥ 0 K ≥ 0 r ≥ 0

here K,b,r are parameters

This system of differential equations always has an equilibrium corresponding to an extinct popu-
lation of the predator and non-zero population of prey (P = 0;N 6= 0).
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(a) Find this (P = 0;N 6= 0) equilibrium.

(b) Find the Jacobian at this equilibrium point.

(c) For which values of the parameters the predator population can be driven to extinction (i.e.
to that equilibrium ).

(N.B. Do not use the ’graphical Jacobian approach for this problem!).

Additional exercises

5. Draw the phase portrait of the following systems of differential equations. Explain their dynamics.

(a)
{ dx

dt = 2y
dy
dt = x− x2−0.5y

(b)
{ dx

dt = x+ y2

dy
dt = x+ y

(c)
{ dx

dt = x(25− x2− y2)
dy
dt = y(x−3)

x≥ 0; y≥ 0

(d)
{ dx

dt = xy
dy
dt = 4− y− x2 −∞ < x < ∞; −∞ < y < ∞

6. Lotka Volterra model with competition in the prey population:
{

dN/dt = aN− eN2−bNP
dP/dt = cNP−dP

for a = 3,b = 1.5,c = 0.5,d = 0.25,e = 3.

7. A swimming pool is infested with algae whose population is N(t). The owner attempts to control
the infestation with an algicidal chemical, poured into the pool at a constant rate. In the absence
of algae, the chemical decays naturally; when algae are present it is metabolized by them and kills
them. The equations of the rates of change of N(t) and the concentration of the chemical in the
pool, C(t), are {

dN/dt = aN−bNC
dC/dt = Q−αC−βNC

where a,b,Q,α,β are positive constants. Discuss the meaning of each term in these equations.

(a) Put a = 1,b = 1,α = 1,β = 1 and show, that the system has two non-negative equilibria if
Q > 1, find them, draw the phase portrait of this system and explain the dynamics.

(b) What happens if Q < 1?

(c) * Find the conditions for control of the infestation for arbitrary positive values of a,b,Q,α,β.



Chapter 8

Limit cycle

8.1 Stable and non-stable limit cycles

In previous chapters we found several possible types of equilibria: saddle, node, spiral and center. Some
of these equilibria can be attractors which determine the ultimate dynamics of a system. However, it
turns out that there exists another important attractor for systems of two differential equations. It is
called a limit cycle. The geometrical image of a limit cycle on a phase portrait is a closed curve. The
usual phase portrait of a system with a limit cycle is shown in fig.8.1a. Here the limit cycle is shown as
a bold ellipse. The figure also shows two more trajectories: one inside the limit cycle and one outside
the limit cycle. Inside the limit cycle you can see a spiral. This is not unusual. There is a theorem which
states that for systems of two equations there is always at least one equilibrium point inside the limit
cycle. In most of the cases such an equilibrium point is a spiral. Outside the limit cycle we can see a
trajectory which approaches the limit cycle and winds onto it.

The limit cycle which is shown in fig.8.1a is called a stable limit cycle. This is because if we start on a
trajectory close to this limit cycle, this trajectory will approach this limit cycle in the course of time.

There also exists another type of limit cycle called a non-stable limit cycle (fig.8.1b). If we start on a
trajectory close to a non-stable limit cycle, it will diverge from this limit cycle. In order to distinguish
the stable and non-stable limit cycles we will draw the non-stable limit cycle using a dashed line.

The main questions regarding the limit cycle are: what will be the dynamics of systems with limit cycles
and how do limit cycles occur in systems of two differential equations? We will also consider an example
of a biological system with a limit cycle.

8.2 Dynamics of a system with a limit cycle.

What will be the dynamics of systems with a limit cycle? In section 4.4.2 we studied an equilibrium
point called a “center”. The phase portrait of that point (fig.4.8) was a set of embedded ellipses. The
corresponding dynamics are oscillations of the x and y variables. Therefore, the dynamics which corre-
sponds to the trajectory which starts on the limit cycle will also be oscillations. Fig.8.2a, fig.8.3a shows
an example of dynamics of the variable x for the trajectory which starts on the limit cycle (at the point C
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Figure 8.1: Phase portrait of a system of two differential equations with a limit cycle.

time

x

C

a
time

x A

b
time

x

B

c

Figure 8.2: Dynamics of a system with a stable limit cycle from fig.8.1a.
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Figure 8.3: Dynamics of a system with an non-stable limit cycle from fig.8.1b.

in fig.8.1).

The dynamics of trajectories originating around the limit cycles will depend on its type. If the limit cycle
is stable, then a trajectory which starts inside the limit cycle will approach it in the course of time and
we obtain oscillations with initially increasing amplitude (fig.8.2b). If the trajectory starts outside the
limit cycle, then we obtain oscillations with an initial decrease of amplitude until the trajectory reaches
the limit cycle (fig.8.2c).

For a non-stable limit cycle the dynamics are different. Only the trajectory which starts on a limit cycle
will have oscillatory dynamics (fig.8.3a). Other trajectories will have different behavior. The trajectory
which originates inside the limit cycle will approach the stable equilibrium inside the limit cycle and we
obtain oscillations with gradually decreasing amplitude (fig.8.3b). The trajectory which starts outside
the limit cycle blows up to infinity or to another equilibrium (fig.8.3c). The oscillations in fig.8.3a with
a non-stable limit cycle are highly improbable in real systems. This is because for such oscillations
the trajectory must start exactly on the limit cycle and even small disturbances will switch our system
either to the behavior of fig.8.3b or fig.8.3c. Therefore, for real systems the non-stable limit cycle just
determines the basin of attraction of the stable equilibrium which is located inside this limit cycle.
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8.3 How do limit cycles occur?

In many cases the limit cycle occurs as a result of the changing of a parameter in a system of differential
equations. The most usual process of formation of a limit cycle is the following. Assume we have a
system of two differential equations with a parameter c:

{ dx
dt = f (x,y,c)
dy
dt = g(x,y,c)

(8.1)

Assume that at some parameter value c = c1 system (8.1) has a global attractor which is a stable spiral
(fig.8.4a). This means that all the trajectories which originate close to or even far from this equilibrium
approach it in the course of time. Because our equilibrium point is a stable spiral the Jacobian of the
system at this point will have two complex eigen values λ1,2 = α± iβ;α < 0. However, because our
system will now depend on the parameter c the eigen values will also depend on this parameter:

λ1,2(c) = α(c)± iβ(c); (8.2)

Because we have assumed that at c = c1 system (8.1) has an equilibrium which is a stable spiral, then
α(c1)< 0. When we change the parameter c the value of α(c) will change and at some c2 it can become
a positive number α(c2)> 0. This means that the stable spiral in fig.8.4a will become an unstable spiral.
However, as we found in chapter 4 (fig.4.3), the eigenvalues only give us the dynamics close to the
equilibrium point of our system. Therefore, it can happen that although close to the equilibrium point
our spiral becomes unstable, the global behavior far from the equilibrium remains the same, i.e. far from
the equilibrium we still have a converging flow (fig.8.4b). Hence, in our phase portrait we have two types
of flow: the diverging flow from the unstable spiral around the equilibrium and the converging flow from
the periphery. Simple geometrical consideration shows that these two flows must be separated from each
other. The line of separation will be the limit cycle in our system. Therefore, we will obtain a phase
portrait as in fig.8.1a.

x

y

x

y

a b

Figure 8.4: Appearance of a limit cycle in a system with a parameter.

Note, that such a mechanism of limit cycle formation frequently occurs in systems of two equations. It
is called the Hopf bifurcation. From our analysis it follows that the Hopf bifurcation occurs when α(c)
changes its sign, i.e. at the parameter value c∗ where:

α(c∗) = 0 (8.3)
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8.4 Example of a system with a limit cycle

Let us consider the Holling-Tanner model for predator-prey interactions.

{
dP/dt = rP(1− P

K )− aRP
d+P

dR/dt = bR(1− R
P) P > 0;R > 0

(8.4)

here P denotes the prey and R the predator population, the term rP(1−P/K) describes the growth of
the prey in absence of predator, aRP

d+P accounts for the predator-prey interaction. At a = 1,b = 0.2,r =
1.,d = 1.,K = 0.7 system (8.4) has one equilibrium point (for P > 0,R > 0) which is a stable spiral. The
null-clines, phase portrait and dynamics of this system are shown in fig.8.5.

10
  -4

5 10 p

10
  -4

5

10

r

10
  -4

5 10 p

10
  -4

5

10

r

0 37.5 75 112 150

0

5

10

pr

Figure 8.5: Dynamics of system (8.4) for K = 0.7. a-null-clines; b-an orbit; c-time-plot for the both
variables for the orbit from fig.b

If we increase the value of the parameter K which accounts for the carrying capacity (K = 1.0) the type
of equilibrium changes and it becomes an unstable spiral. As we discussed in section 8.3 we expect the
formation of a stable limit cycle. We can clearly see it in fig.8.6b. The trajectory, which starts from the
same initial conditions as the trajectory from fig.8.5b will now approach some closed curve which is a
limit cycle and the dynamics of the system will be oscillatory (fig.8.6c).
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Figure 8.6: Dynamics of system (8.4) for K = 1.0. a-null-clines; b-an orbit; c-time-plot for both
variables for the orbit from fig.b

If we start a trajectory inside the limit cycle then, as we predicted in fig.8.1a and fig.8.2b, the trajectory
will approach the limit cycle and the dynamics will be oscillation with increasing amplitude fig.8.7a,b.
The complete phase portrait of this system at K = 1 is shown in fig.8.7c.

You will learn more about the biological consequences of this type of dynamics in the course “Theoretical
Biology” by R. de Boer.
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Figure 8.7: Dynamics of system (8.4) for K = 1.0. a-an orbit originating inside the limit cycle; b-time-
plot for the both variables for the orbit from fig.a; c-phase portrait of system (8.4)

Conclusion 13 A limit cycle is a closed trajectory on the phase portrait of a system of two differential
equations.

If trajectories around the limit cycle converge onto it, then the limit cycle is called a stable limit cycle. If
trajectories around the limit cycle diverge away from it, then the limit cycle is called a non-stable limit
cycle.

The dynamics of a system with a stable limit cycle is oscillatory. The dynamics of a system with an
non-stable limit cycle is either converging to the equilibrium which is located within the limit cycle or
diverging, possibly to infinity.

Limit cycles can appear as a result of a Hopf bifurcation, i.e. the process where the real part of the
complex eigenvalues change their sign.

8.5 Exercises

1. Assume that a system of two differential equations has two equilibria which are a saddle point and
a non-stable spiral. The phase portrait of this system is partially shown in fig.8.8a What is missing
here?

(a) Complete the phase portrait of this system

(b) Qualitatively sketch the dynamics of the variable x ( dependence of the variable x on time)
for the initial conditions which are shown in fig.8.8 by the point A in fig.8.8a.

2. Complete the phase portrait of this system shown in fig.8.8b,c. Qualitatively sketch the dynamics
of the variable x ( dependence of the variable x on time) for the initial conditions which are shown
by points A,B,C in fig.8.8b,c. (Note, that in fig.8.8b,c a stable limit cycle is shown by the solid
line and a non-stable limit cycle is shown by the dashed line)

3. As we discussed in (8.3) the necessary condition for the appearance of a limit cycle via a Hopf
bifurcation is that the eigenvalues of the Jacobian matrix of a system at the equilibrium point are
complex and the real part of the eigenvalues are zero α(c∗) = 0. Prove that this condition can be
rewritten in the following way using the det and tr of the Jacobian matrix:

trJ(c∗) = 0; detJ(c∗)> 0 (8.5)
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4. One of the classical models for oscillatory phenomena in biochemical systems is a model called
the Brusselator. In dimensionless form this model can be written as the following system of two
differential equations:

{ dx
dt = a− (b+1)x+ x2y x > 0;y > 0
dy
dt = bx− x2y a > 0;b > 0

(8.6)

here x and y are concentrations of two biochemical species and a and b are parameters. Study
system (8.6) for a = 1.

(a) Find a non-trivial equilibrium.

(b) Determine the stability of this equilibrium as a function of the parameter b.

(c) Find the value of b when system (8.6) undergoes a Hopf bifurcation. (Note: it can be helpful
to use equations (8.5)).

(d) For which values of b do you expect oscillations in system (8.6)?

5. Study the following predator-prey model
{

dP/dt = rP(1− P
K )− aRP

h+P
dR/dt = caRP

h+P −dR P≥ 0;R≥ 0
(8.7)

(a) Draw null-clines of this system for r = 1,a = 3,h = 0.1,c = 1.,d = 2.5 and two values of K,
K = 0.8 and K = 1.6. (Hint: the maximum of the parabola A(x−a)(x−b) is reached at the
middle between its roots (i.e. at x = a+b

2 )).

(b) Determine the stability of non-trivial equilibrium in both cases using the graphical Jacobian.

(c) For which value of K do you expect oscillatory behavior?

(d) Extend your analysis for arbitrary positive values of the parameters (r,a,h,c,d,K > 0) pro-
vided ca > d. Find for which values of K the non-trivial equilibrium is stable. When do
we expect oscillations? (Note, that critical values of K should be a function of the other
parameters of the system).



Chapter 9

Historical notes

I developed this course in 1995-2010 for biology students from Utrecht University. The main idea was
to develop a course which will allow students with minimal mathematical background to understands
basic methods used in mathematical biology. Over the years the course was many times adjusted and
modified. The current text contains the latest version of the course from 2010.
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Chapter 10

Dictionary

absolute value absolute waarde
autonomous system autonoom systeem
attractor attractor
basin of attraction basin van attractie
bifurcation bifurcatie
carrying capacity draagkracht
center point centrumpunt
complex conjugate number complex toegevoegde
component of the vector component van de vector
determinant determinant
derivative afgeleide
differential equation differentiaal vergelijking
direction field vectorveld
eigen value eigenwaarde
eigen vector eigenvector
equilibrium evenwicht
general solution algemene oplossing
harvesting oogsten
imaginary part of complex number het imaginaire deel van een complex getal
initial value problem beginwaarde probleem
Jacobian Jacobi-matrix
linear approximation lineaire benadering
modulus modulus
node knooppunt
non-stable manifold instabiele manifold
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null-cline isocline
parameter parameter
partial derivative partiële afgeleide
particular solution specifieke oplossing
phase space faseruimte
phase portrait faseplaatje
real part of complex number het reëele deel van een complex getal
saddle zadelpunt
spiral spiraalpunt
stability stabiliteit
stable manifold stabiele manifold
system of differential equations stelsel differentiaal vergelijkingen
trajectory trajectorie
trace of the matrix spoor van de matrix
variable variabele
vector vector
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Hints:

11.0.1 Solution of the initial value problem for a linear system

Let us illustrate how we can find a solution for the initial value problem, on example of system (4.11).

Problem: Find the solution for the following initial value problem:

( dx
dt
dy
dt

)
=
(

1 4
1 1

)
,
( x

y
)( x(0)

y(0)

)
=
(

4
6

)
(11.1)

Solution: We already found a general solution of (11.1) as formula (4.20):
( x

y
)
=C1

( −4
2

)
e−1∗t +C2

( −4
−2

)
e3∗t (11.2)

Using it we can find a particular solution, corresponding to any given initial conditions.

We proceed as follows. At time t = 0 (11.2) gives:
( x

y
)
=C1

( −4
2

)
e−1∗0 +C2

( −4
−2

)
e3∗0 =C1

( −4
2

)
+C2

( −4
−2

)
.

This expression will satisfy the initial conditions if: C1

( −4
2

)
+C2

( −4
−2

)
=
(

4
6

)
. This gives the following

system of equations for unknowns C1 and C2:
{ −4C1−4C2 = 4

2C1−2C2 = 6

We now solve this system using the method described in section 1.1.4. From the second equation we find:
2C1 = 6+2C2, or C1 = 3+C2. After substitution of this expression to the first equation we find:
−4(3+C2)−4C2 = 4, i.e. −12−4C2−4C2 = 4, or −8C2 = 4+12 = 16 and C2 = 16/(−8) =−2.
We now find C1 from our substitution as C1 = 3+C2 = 3−2 = 1.

Thus C1 = 1,C2 =−2 give the solution of our system satisfying given initial conditions. Let us rewrite it as:

( x
y
)
= 1∗

( −4
2

)
e−1∗t −2∗

( −4
−2

)
e3∗t =

(
−4e−1∗t −2∗ (−4)e3∗t

2e−1∗t −2∗ (−2)e3∗t

)
,

thus the particular solution is given by x(t) =−4e−1∗t +8e3∗t , and y(t) = 2e−1∗t +4e3∗t .

11.0.2 Equilibria/derivatives

Problem:(A) Find equilibria of the following systems
{ dx

dt = f (x,y)
dy
dt = g(x,y)

(see definition in section 5.1.2).

(B) Find the following partial derivatives at each equilibrium point ( ∂ f
∂x ,

∂ f
∂y ,

∂g
∂x ,

∂g
∂y ).

(a)
{ dx

dt = 4x−2xy
dy
dt = 2xy−4y
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Solution: (A) We rewrite the first equation as 4x−2xy = 2x(2− y) = 0. It has solutions x = 0 or y = 2.
Let us substitute them to the second equation:
For x = 0, we get 2∗0∗ y−4y =−4y = 0, thus y = 0. Therefore we found one equilibrium x = 0,y = 0.
Now substitute y= 2. We get 2∗x∗2−4∗2= 4x−8= 0, thus x= 2. We found the second equilibrium x= 2,y= 2.

(B) f (x,y) = 4x−2xy, thus ∂ f
∂x = 4−2y; ∂ f

∂y =−2x.

g(x,y) = 2xy−4y, thus ∂g
∂x = 2y; ∂g

∂y = 2x−4.
At the equilibiria points:

Equilibrium x = 0,y = 0: ∂ f
∂x = 4−2∗0 = 4; ∂ f

∂y =−2∗0 = 0; ∂g
∂x = 2∗0 = 0; ∂g

∂y = 2∗0−4 =−4.

Equilibrium x = 2,y = 2: ∂ f
∂x = 4−2∗2 = 0; ∂ f

∂y =−2∗2 =−4; ∂g
∂x = 2∗2 = 4; ∂g

∂y = 2∗2−4 = 0.
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Answers for selected exercises and Formulas lists

Exercises Chapter 1

1. (a) 3axy

(b) 6
r − 5r

30r+5 = −r2+36r+6
r(6r+1)

2. (a) limx→∞
ax+q
c2+x2 = 0

(b) limN→∞
aN2+q

b
N +c2+dN2 =

a
d

3. (a) 3r+2−5(r+1) = 6r+4; r =−7
8

(b) x+ 4
x = 4; x1,2 = 2±

√
0 = 2

(c) (b− N
k )N = 0; N = 0, or N = bk.

(d) N = 0, or b−d(1+ N
k ) = 0, thus N = k(b−d)

d .

(e) N = 0, or N = h( b
d −1)

4. (a) From 1st eq. x = 2y−5, substitution to 2nd eq.
gives y = 4, thus x = 3.

(b) from 1st eq.x = −b
a y to 2nd eq. gives x =

−b
a y =−b

a
−ba

da−bc =
b2

da−bc

(c) From 2nd eq. y(4−x) = 0, this y = 0 or x = 4.
Substitution to the 1st eq. gives or x = 0 and
x = 0.5. Now substitute x = 4, we get y = 7,
thus all solutions are given: (0,0),(0.5,0),(4,7).

(d) From 2nd eq. y(9−3x− y) = 0, thus y = 0 or
y = 9−3x. Substitution to the 1st eq. gives:
(0,0),(4,0),(0,9),(2.5,1.5).

(e) From 2nd eq. N = 0, or R = δ. Substitution to
the 1st eq. gives: : (0,0),(k(1−d),0),(δ, 1−d

a −
δ
ak ).

5. (a) f ′(x) = 1
x3 =− 3

x4

(b) f (x) = e−5x and f ′(x) =−5e−5x

(c) ((4x− x2)∗ (2x+3))′ = 10x+12−6x2

(d) y′ = x2+a2

(a2−x2)2

6. (a) y-intercept y =− b
c2 , zeros n =±

√
b
a , horizon-

tal asymptote: y = a

(b) y-intercept y = hr
a , zeros R =−h and R = K.

7. (a) fig.a

(b) fig.b

(c) horizontal asymptote y = 7, intercept y(0) = 4.
(fig.c). Dependence on a. If a increases, the
horizontal asymptote y = 7 will be approached
at a slower rate. (fig.c)

a b c

x x

yy
3

0.5
0.33

y
7

4

x

8. (a) (see below,fig.a)
(b) (see below,fig.b)

y

a b c

xx x

y

d

3 N

P

a
y

(c) (see above, fig.c)
(d) (see above, fig.d)

(e) N = 0 and P =−d(N +a) (see below, fig.a)

(f) R = 0 and d
c (b− R)(R + a) = N (see below,

fig.b)

b c

P

a

N N

b/a
b−a−a

−da RRN

d

(1+b)/e

N

P
(d+1/k)

1

(g) R = 0 and b
a(1− (1

k + d)R) = N (see above,
fig.c).

(h) N = P
a (eP− (1+b)) (see above, fig.d).

9. (a) ((x−2y)∗(y−2x)+2y2)∗ 1
x =

5xy−2x2

x = 5y−
2x

(b) a−2b
2p : 4b−2a√

p =− 1
4
√

p
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10. no answer provided for this exercise

11. (a) 2= eln(2), thus (2x)′=(eln(2)x)′= ln(2)(eln(2)x)=
ln(2)2x

(b)
√

1
x3 =
√

x−3 = x−
3
2 , thus (x−

3
2 )′ =−3

2 x−
5
2

(c) f (x) = cos(x2) and f ′(x) =−2xsin(x2)

(d) f (x) = cos2(x) and f ′(x) =−2sin(x)cos(x)

(e) (ax∗ ebx)′ = aebx +abxebx

(f) y′ = 2x(2x2−3x)−(4x−3)(x2−5)
(2x2−3x)2 = −3x2+20x−15

(2x2−3x)2

(g) y′ = 2ax(bx−c)−abx2

(bx−c)2 = abx2−2acx
(bx−c)2

(h) y′ = (1+ x
d )− x

d
(1+ x

d )
2 = 1

(1+ x
d )

2

(i) y′ = nxn−1(xn+an)−nxn−1xn

(xn+an)2 = nxn−1an

(xn+an)2

12. no answer provided for this exercise

13. (a) d f
dx = 3x2, d f

dt = 3x2 dx
dt

(b) d f
dx =−ae−ax, d f

dt =−ae−ax dx
dt

(c) d f
dt = d f

dx
dx
dt

14. (a) y-intercept y=−2,zero x= 4,horizontal asymp-
tote y= 0, as y= limx→∞

x−4
x2−3x+2 = limx→∞

x
x2 =

0, vertical asymptote is at x2−3x+2 = 0, i.e.
x = 1, and x = 2.

(b) y = a : b
x3−c = a

b(x
3− c), thus y-intercept y =

−ac
b , one zero: x = 3

√
c

15. (a) no answer provided for this exercise

(b) y= x2+2x−3= (x−1)(x+3), as we have ’+’
at x2 the parabola is opened upward. (Graph
fig.a)

(c) horizontal asymptote y = 0, vertical asymptote
x =−3, no zeros (fig.b)

y

a b

x1−3 x

y

−3

(d) (fig.a below). Parameter b shifts the horizontal
asymptote.

(e) no answer provided for this exercise

(f) h = kr
4 .

nx

4+b

a b

16. no answer provided for this exercise

Exercises Chapter 2

1. (a) x1,2 =−2± i.

(b) x1 = 2,x2 = 3.

2. (a)
(

2 −4
1 1

)( x
y
)
=
(

3
1

)
, detA = 2+4 = 6.

(b)
(

a b
c d

)( x
y
)
=
(

0
−b

)
, detA = ad−bc.

3. (a) λ1 =−1, v1 = k
( −1
−1

)
; λ1 =−3, v2 = k

( −1
1

)
,

where k is an arbitrary number.

(b) λ1 =−1, v1 = k
( −4

2

)
; λ1 = 3, v2 = k

( −4
−2

)
,

where k is an arbitrary number.

(c) λ1 = 1+ i, v1 = k
( −5
−2− i

)
; λ1 = 1− i, v2 =

k
( −5
−2+ i

)
, where k is an arbitrary number.

4. (a) ∂z
∂x = 2x at (1,2) it is 2; ∂z

∂y = 2y at (1,2) it is 4;

(b) ∂z
∂x = 25−3x2− y2, at (3,4) it is -18;

(c) ∂z
∂N = bR−d, at 0,0 it is−d; at R = d

b ,N = 1 it
is 0; ∂z

∂R = bN, at 0,0 it is 0; at R = d
b ,N = 1 it

is b.

(d) ∂z
∂P =− a

(1+P)2 , ∂z
∂M =−b;

(e) ∂z
∂N = a−2eN−bP, ∂z

∂P =−bN;

(f) ∂z
∂M = L− νA

h+A , ∂z
∂A =−δ− νMh

(h+A)2 ;

(g) ∂z
∂P1

= 2aP1P2
(h+P2

1+2P2)2 and ∂z
∂P2

=− a(h+P2
1 )

(h+P2
1+2P2)2

(h) ∂z
∂N = b2NT (2+cN)

(1+cN+bT N2)2
∂z
∂T = b2N2(1+cN()

(1+cN+bT N2)2

5. (a)
√

32−90 =
√
−81 =±9i

(b) (−1+2i)+(4+7i) = 3+9i

(c) (4+5i)∗(7+2i) = 28+8i+35i+10i2 = 18+
43i

(d) 1
i =

i
i2 =−i

6. (a) x1,2 =±11i

(b) x1,2 =−1± i
√

2
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7. • A =
(

1 2
2 1

)
, detA = −3; Dx =

(
5 2
4 1

)
,

detDx =−3 Dy =
(

1 5
2 4

)
, detDy =−6, thus

x = −3
−3 = 1;y = −3

−3 = 2.

• By usual method: x = 5− 2y thus after subs
into 2nd eq. we get 10− 4y+ y = 4, or y = 2
and hence x = 5−2∗2 = 1.

8. (a) λ1 = 2, v1 = k
( −6
−3

)
; λ1 =−5, v2 = k

( −6
4

)
,

where k is an arbitrary number.

(b) λ1 = 3, v1 = k
( −1
−1

)
; λ1 =−5, v2 = k

( −1
7

)
,

where k is an arbitrary number.

9. f (x,y)≈−2+2x+2y

Exercises Chapter 3

1. at t = 4,n = 30e6 ≈ 12102.86, The double size at :
t = ln(2)

1.5 ≈ 0.46.

2. k = ln(2)
1200 ≈ 0.58 ·10−3sec−1.

3. (a) −15+8x−x2 = (3−x)(−5+x) Phase portrait
in fig.a. (below), (zeros of parabola x1 = 3 and
x2 = 5), attractor x = 5, basin x > 3.

(b) Phase portrait in fig.a. (below), attractor x = 4,
basin x > 1.

(c) Phase portrait in fig.c. (below), attractor x =
−3, basin x < 0 and x = 2, basin, x > 0.

a

x

y

−3 2x1 2x

c d

(d) fig.d. (above), attractor x =−2
√

2, basin x < 0
and x = 2

√
2, basin, x > 0.

(e) fig.a (below) attractor x = 4 basin 0 < x < 10;
fig.b (below), attractor x = 0, basin x < 1 and
attractor x = 6, basin x > 1.

x

f(x)

60 1

x

f(x)

0 4 10

0 1 2

a b c

(f) graph is shown in fig.c (above), attractor x = 0,
basin x < 1 and attractor x = 2, basin x > 1.

4. General consideration. Typical graphs are shown in
the figure. s shifts the graph upward. If the total shift
is less then the minimum of the graph, nothing will
change. If the shift is more than the minimum (fig.b),
the x will go to the right equilibrium.

y

0 0.2 1 x x
0 0.2 1

y

ba

For questions (a) fmin ≈ −0.009 (b) x final is x = 0,
for question (c) x final is x = 1. (d) smax = 0.009

5. The maximal yield if h equals maximum of r ∗ n ∗
(1−n/k) (see the last section of this chapter), which
gives hmax =

rk
4

6. (a) the general solution W = 400/0.3+Ae−0.3t , W =
1333−1323e−0.3t ;
(b) t =−ln(0.504)/0.3 = 2.29;
(c) t =−ln(0.9)/0.3 = 0.42;

7. the steady state value is m = α
α+β and the character-

istic time τ = 1
α+β .

8. stable equilibrium at n∗ = k(r−h)
r , yield is given by

yield = hn∗= kh(r−h)
r , which has maximal value yieldmax =

kr
4 .

9. the last strategy is better as population is more stable:
small decrease in population size is OK for the last
strategy, but for the other case small decrease will
result in the population extinction.

Exercises chapter 4

1. (a)
( x

y
)
=C1

( −1
−1

)
e−t +C2

( −1
1

)
e−3∗t

(b)
( x

y
)
=C1

(
1
1

)
e2t +C2

(
1
−2

)
e5t

2.
( x

y
)
= 3

2

(
2
−2

)
e3t

3. system is
{ dC1

dt =−0.01C1 +0.01C2
dC2
dt = 0.04C1−0.04C2

, the solution:
(

C1
C2

)
=−240

( −0.01
−0.01

)
−60

( −0.01
0.04

)
e−0.05t ,

or C1 = 2.4+0.6e−0.05t , and C2 = 2.4−2.4e−0.05t .

4. (a) det
∣∣∣ 1−λ 4

2 3−λ

∣∣∣=(1−λ)(3−λ)−8= λ2−
4λ−5= 0, λ1 = 5,v1 = k

( −4
−4

)
; λ2 =−1,v2 =

k
( −4

2

)
, thus this is a saddle point (the cor-

responding phase portrait form the figure (a)
below).
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(b) characteristic eq. is λ2 − 6λ + 8 = 0, λ1 =

2,v1 = k
(

1
3

)
; λ2 = 4,v2 = k

(
1
1

)
, i.e. a

non-stable node (phase portrait see fig.b).

(c) characteristic eq. is λ2 − 2λ + 2 = 0, λ1 =
1 + i, λ2 = 1− i,(no eigen vectors required).
A non-stable spiral (qualitative phase portrait
see fig.c).

a cb

(d) characteristic eq. is λ2 + 4λ + 3 = 0, λ1 =

−3,v1 = k
( −1

1

)
, λ2 =−1,v21 = k

( −1
−1

)

i.e. a stable node ( phase portrait see fig.a be-
low).

(e) characteristic eq. is λ2+2λ+2= 0, λ1 =−1+
i, λ2 = −1− i,(no eigen vectors required). A
stable spiral (qualitative phase portrait see fig.b).

(f) characteristic eq. is λ2 +1 = 0, λ1 =+i, λ2 =
−i,(no eigen vectors required). A center (qual-
itative phase portrait see fig.c).

(g) characteristic eq. is λ2−1 = 0, λ1 =+1,v1 =

k
(

1
−3

)
; λ2 =−1,v1 = k

(
1
−1

)
, i.e. a sad-

dle ( phase portrait see fig.d).

a b c d

5. Characteristic equation is given by
det
∣∣∣ −2−λ −a

3 −1−λ

∣∣∣= (−2−λ)(−1−λ)+3a=

λ2+3λ+2+3a= 0, λ1,2 =
−3±

√
1−12a

2 . If 1−12a<
0, i.e. a > 1

12 we have complex roots. Because the
real part for complex roots is negative we have a sta-
ble spiral. If the roots are real (a > 1

12 ), then λ2 =
−3−

√
1−12a

2 is always negative. The first root λ1 =
−3+

√
1−12a

2 will be positive is −3+
√

1−12a > 0,
i.e. if the expression under the root we have a value
more than 9 (

√
9 = 3), this gives us 1− 12a > 9,

or a < −8
12 = −2

3 . Thus if a < −2
3 , then λ1 > 0 and

we have a saddle point. In the interval −2
3 < a < 1

12
we have λ1 < 0, thus both real roots negative, and
we have a stable node. Conclusion, if we increase
a from −∞, we will first have a saddle point (unsta-
ble eq.) till a = −2

3 , then the saddle will become
stable node (stable eq.), until a = 1

12 . If a becomes

more than 1
12 we will have a stable spiral (stable eq.).

Qualitative phase portrait can be plotted as in the pre-
vious exercise.

6. In linear system oscillation occur if the equilibrium
type is a center. Characteristic equation is given by
λ2 +(a+ b)λ+ ab+ 3− 2a = 0. The center occurs
if the roots complex with a zero real part (b = −a).
These conditions give a2 + 2a− 3 < 0, thus oscilla-
tions occur, if b =−a and −3 < a < 1.

7. (a) system is
{ dx

dt =−(a+ c)x+by
dy
dt = ax− (b+ e)y

,

(b) system is
{ dx

dt =−5x+2y
dy
dt = 0.5x−5y

, eigen values λ1 =

−4, λ2 = −6, stable node, stable equilibrium. (c)
formula for eigen values in general case are:

λ1,2 =
−(a+b+c+e)±

√
(a+b+c+e)2−4∗[(a+c)(b+e)−ab]

2 . We
see that (a+ c)(b+ e)−ab = ae+bc+ ce > 0, thus
expression under√ is less than (a+b+c+e)2, thus
we can have either stable node or stable spiral, both
types of equilibria are stable.

Exercises chapter 5

1. (a) Equilibria: (0,0),(4,0). ∂ f
∂x ,

∂ f
∂y ,

∂g
∂x ,

∂g
∂y are:

at (0,0):0,−4,4,−0.5;
at (4,0): 0,−4,−4,−0.5.

(b) Equilibria: (0,0),(−9,−9). Derivatives are:
at (0,0):9,0,1,−1;
at (−9,−9): 9,−18,1,−1.

(c) Equilibria: (0,0),(0.5,2). Derivatives are:
at (0,0): 2,0,0,−1; at (0.5,2): 0,−0.5,4,1.

(d) Equilibria: (0,0),(0,0.5),(1,0),(0.25,0.25). Deriva-
tives are: at (0,0):1,0,0,1;
at (0,0.5): −0.5,0,−1,−1; at (1,0):−1,−3,0,−1;
at (0.25,0.25): −0.25,−0.75,−0.5,−0.5.

2. From 2nd P = 0 or N = d
c , which after substitution

to 1st equation gives 3 equilibria (0,0), (a
e ,0),(

d
c ,

a
b−

ed
bc ). All non-negative if: ac≥ ed

3. From 2nd M = d
c P. Substitution to 1st gives one

non-negative equilibrium: P1 =
−1+
√

1+ 4ac
bd

2 and thus
M1 =

d
c P1

4. From 2nd I = 0, or S = α
β . Substitution to 1st gives

equilibria: (I = 0,S = B
µ ) and (I = B

α−
µ
β ,S = α

β . The
first equilibrium is always positive, the second one is
positive if Bβ > αµ.

5. (a) non-stable spiral, non-stable.
(b) saddle, non-stable.
(c) saddle, non-stable.
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(d) center, neutrally stable.

6. (a) 2 equilibria (0,2), (1,1) which are stable node
and saddle; (d) see fig.a below.

ba

7. only one equilibrium (0,0). At this equilibrium, detJ >
0,trJ < 0, thus equilibrium is stable.

8. (a) (d
c ,

a
b), linearization dv

dt = Jv, where J =
(

0 −bd
cac

b 0

)
;

(c) center point; (d) see fig.b above.

9. no answer provided for this exercise

10. no answer provided for this exercise

11. no answer provided for this exercise

12. no answer provided for this exercise

13. Equilibria of system. From 2nd e = 0, to 1st eq.,
0− g = 0, i.e. equilibrium is (0,0). Jacobian at the
equilibrium is: ∂F

∂e = ∂(−e3+(1+a)e2−ae−g)
∂e = −3e2 +

2(1+ a)e− a, at (0,0) it is −a, ∂F
∂g = −1, ∂G

∂e = ε
∂G
∂g = 0, thus J =

( −a −1
ε 0

)
and we get detJ =

ε > 0, trJ =−a,D = a2−4ε, thus equilibrium is al-
ways stable, and it is a node if D > 0, i.e. a2 > 4ε,
and a stable spiral if a2 < 4ε.

Exercises chapter 6

1. (a) Null-clines are given below in fig.a, thus the graph-

ical Jacobian on basis of ’black’ points is: J =
( α β
−γ −δ

)
.

This gives for detJ =−αδ+βγ, and we do not know
what is the sign. Thus graphical Jacobian does not
work here. The real Jacobian here is: J =

(
3 1
−1 −1

)
,

that gives detJ = −2 < 0, thus we have a saddle
point. Phase portrait is in fig.b.

dcba

(b) Null-clines are given above in fig.c, Graphical Jaco-
bian does not work here. The real Jacobian gives
stable spiral. Phase portrait is in fig.d.

(c) Null-clines are given below in fig.a, the graphical Ja-
cobian gives saddle point. Phase portrait in fig.b.

(d) Null-clines are given below in fig.c, the graphical Ja-
cobian gives a non-stable equilibrium (node, spiral).
The real Jacobian gives a non-stable spiral. Phase
portrait fig.d.

dcba

2. For fig.a below we have two equilibria (marked). For
the left one the graphical Jacobian gives a stable equi-
librium (stable node or stable spiral). The right equi-
librium gives a saddle.

y

x

a b c

y y

x x

For fig.b we have one equilibrium (marked). The
graphical Jacobian gives a stable equilibrium (stable
node or stable spiral).
For fig.c we have one equilibrium (marked). The
graphical Jacobian gives a stable node.

3. (a) See fig.a below. (b,c) equilibria: (0,2),graphical
Jacobian gives a stable node; (1,1): saddle. For
phase portrait see solution problem 6 chapter 5.

x

b

y

a c

4. (a) See fig.b above. (b,c) equilibria: (0,0),graphical
Jacobian: saddle; 2nd equilibrium (d

c ,
a
b), graphical

Jacobian: center. Phase portrait fig.c above. (d) no,
for positive parameters.

5. (a), (b) no answer provided for this exercise

(c) vector field see fig.a; Equilibria (0,0),graphical Ja-

cobian: J =
( α β

γ −δ
)

, detJ =−αδ−betaγ< 0,saddle;

2nd equilibrium (−9,−9),graphical Jacobian: J =( α −β
γ −δ

)
, detJ =−αδ+βγ, sign unknown, trJ =

α−δ, equilibrium type unknown; phase portrait fig.b.

(0,0)

(−9,−9)

a
? b?
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(d) no answer provided for this exercise

Exercises chapter 7

x x

yy

x

y

1

2

1

2

1

2

3

1

2

3

1

2

3

cba

ed f

1. (a) graphical Jacobian: at 1 stable node. At 2 saddle.
Null-clines fig.a above, phase portrait fig.d.

(b) At 1 saddle. At 2 not known, stable node/spiral. At 3
saddle. Null-clines fig.b above, phase portrait fig.e.

(c) At 1 not known, stable node/spiral. At 2 saddle. At
3 not known, stable node/spiral. Null-clines fig.c
above, phase portrait fig.f.

2. (a) Null-clines x: x = 0,y = 1− x, y: y = 0,x = 1
2 ,

fig.a below.
Equilibria (0,0),(1,0),(1

2 ,
1
2). Graphical Jacobian:

(0,0) unstable node. (1,0): stable node. (1
2 ,

1
2) sad-

dle. Phase portrait fig.b. One attractor (1,0). Basin
of attraction shaded.

0.5

x

y

0

1

1
a b 0

2

2

P

N

c d

(b) Null-clines N: N = 0,P = 2− N, P: P = 0,P =
3−2N, fig.c above
Equilibria (0,0),(2,0),(0,3),(1,1). Graphical Ja-
cobian: (0,0) , unstable node; (2,0) , stable node;
(0,3), stable node: (1,1) cannot determine equilib-
rium type using graphical Jacobian. Need ’real’ Ja-
cobian, which gives saddle. Phase portrait fig.d. Two
attractors (2,0) and (0,3), basins of attraction shaded.

3. Null-clines P: M = dPP
b , M: M = abK2

dM(K2+P2)
, fig.a be-

low
One equilibrium. Graphical Jacobian gives stable
equilibrium node/spiral. Phase portrait fig.b. One
attractor 1. Basin of attraction shaded.

0 P

M

ba P

M

1
ab
dm

0

N

P

c
2. K

r/b

0.5

1

1

P

N

d

4. (a)Equilibrium (K,0); (b) J =
(

r− 2rN
K −bP −bN

bP bN−2b

)
=

( −r −bK
0 bK−2b

)
; (c) Equilibrium is stable if 0 <

K < 2.

5. (a)-(d) no answer provided for this exercise

6. Fig c,d above

Exercises Chapter 8

1. see figure below

x

y

A−

−

−

1

3

1 3 5
| | | | | |

−

|

t

6 x

1

2. see figure below

B

x

y

AC−

−

−

1

3

1 3 5
| | | | | |

−

1

6

B

C
A

x

y

C−

−

−

1

3

1 4 7
| | | | | |

−

A

B

x

1

8

A

C

t

B
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Main graphs:

Quadratic equation:

Equation Aλ2 +Bλ+C = 0, has solutions given by the following
’abc’ formula:
λ12 =

−B±
√

B2−4AC
2A

Differentiation rules:
(xn)′= nxn−1; (ex)′= ex; (sin(x))′= cos(x); (cos(x))′=−sin(x);
(ln(x))′ = 1

x

( f g)′ = f ′g+g′ f ; ( f
g )

′ = f ′g−g′ f
g2 ; f ′(g(x)) = f ′(g)g′.

1D differential equations:
Equation dN

dt = kN has the solution: N(t) = N0ekt ;
N0 is an (arbitrary) initial value of N. Characteristic time of
change is τ = 1/k.

Systems of linear differential equations:

For system
{ dx

dt = ax+by
dy
dt = cx+dy

,

characteristic equation: det
∣∣∣∣

a−λ b
c d −λ

∣∣∣∣ = 0, gives eigen

values λ1,2, which can be real ( λ1, λ2),
or complex (λ1,2 =α± iβ). Eigen vectors can be found from sub-
stitution of λ1, λ2 to:(

vx
vy

)
=

(
−b

a−λ

)
or

(
vx
vy

)
=

(
d−λ
−c

)

The general solution is given by:
(

x
y

)
=C1

(
v1x
v1y

)
eλ1t +C2

(
v2x
v2y

)
eλ2t

Eigen values determine equilibrium type as shown in the figure
below. For saddle and nodes the manifolds are directed along the
eigen vectors.

non−stable nodestable nodesaddle

stable spiral non−stable spiral

Real eigen
values λ1 λ2

Complex eigen
values

−
α +  βi

center

λ >0
λ <0

λ <0
λ <0

λ >0
λ >01

1 1

2
2 2

α=0 α<0 α>0

Equilibrium type can be determined form the det-tr of the sys-
tem, as shown in the next figure:

center

saddle

node

stable non−stable

   node

non−stable spiralstable spiral

tr A

det A

5

1

23 4
6

D=0

Note, that for the linear system
detA = ad −bc, trA = a+d, D = (trA)2 −4 ·detA
and D < 0 above the parabola on the figure.

For general system
{ dx

dt = f (x,y)
dy
dt = g(x,y)

equilibira are
{

f (x,y) = 0
g(x,y) = 0

The x-null-cline is given by f (x,y) = 0,the y-null-cline is given
by g(x,y) = 0.

Equilibrium type can be found from the Jacobian: J =

(
∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)

evaluated at the equilibrium.
The signs of these derivatives can be found using the ’graphical
Jacobian’ method as shown in the figure below:

1
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