PYTHON PRIMER

/

T LEARNED IT LAST
NIGHT! EVERYTHING
IS SO SIMPLE!

]

HELLO WORLD 1S JUST
print “Hello, wortd!"

T DUNNO-..
DYNAMIC TYPING?
WHITEGPRCE?

COME JoiN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
" UP HERE!

BUT HOW ARE
YOU FLYING?

/
I JUST TYPED
import thmuﬂy
THAT'S 1T? {

... T ALS0 SAMPLED
EVERYHING IN THE
VEDICINE (PBINET
FOR COMPARISON.

{
}\ BUT I THNK THIS
16 THE PYTHON.

AIT-BUDAPEST

2N NSTITUTE 0F TECHNGLDZY

Andras Aszodi

These slides are intended to introduce basic Python features that we will need during
the “Biocybernetics” lectures.

Python's origins

o What will YOU be wearing for |
L33 INTERNATIONAL MONTY PYTHON DAY? |

F @l

No, Python has nothing to do with snakes. The language is named in honour of the
immortal Monty Python group.

reference The Zen of Python
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
5. Flatis better than nested.
6. Sparse is better than dense. \
7. Readability counts. : ‘
8. Special cases aren't special enough to break the rules. ' ™ i ':
9. Although practicality beats purity. & & -
10. Errors should never pass silently. Q W%‘w
11. Unless explicitly silenced. b
12. In the face of ambiguity, refuse the temptation to guess.
13. There should be one-- and preferably only one --obvious way to do it.
14. Although that way may not be obvious at first unless you're Dutch.
15. Now is better than never.
16. Although never is often better than *right* now.
17. If the implementation is hard to explain, it's a bad idea.
18. If the implementation is easy to explain, it may be a good idea.
19. Namespaces are one honking great idea -- let's do more of those!

This is the summary of the "Python philosophy", the design principles of the
language. Some of them are universal in the sense that they should apply to any
human creative effort.

Programming principles

"Data structures + algorithms = programs"

Data Algorithm Data
Niklaus Wirth

What to do with the data?

Algorithms are recipes that prescribe
what to do with the data. In Python
you implement them using functions.

Programming is like cooking. In the kitchen the recipe describes how to convert the
ingredients (vegetables, meat etc.) into a delicious dish. In computers, algorithms
describe how to convert the input data into a desired result. In Python, the "recipe"
(i.e. the algorithm) is implemented as a function, software constructs that take pieces
of data, do something to them and then return results.

Object-oriented programming

A real-world object

Modelling the world

]
i i
1 1
I 1
) 1
Most things have a : :
state and some : 1
operations that can 1 Algorithm :
manipulate their state. : :
This can be mapped to : I
software objects. 1 :
1
i i
) F]

A software object
Data
Methods]—

Object state Methods

Data within an object Functions that inspect or

represent its internal state. modify the state of their
object.

Python is an "object-oriented" programming language: this means that data and the
algorithms operating on the data are conceptually "bundled together" in "software
objects".

Standalone functions

Simple function invocation

Return value print("We", "love", "Python")
1 1
The result of the function’s i
operation is returned here. Arguments (parameters)
It may be a value or None
(nothing). The function operates on its arguments. print, for

example, prints all its arguments in order.
Arguments are enclosed in () and separated with
, - Spaces are not significant.

Optional and named arguments Function without arguments
print(uqw , non , "3=6" 1159P="+'i) exit ()
i S
Optional arguments change behaviour End the session
Here, sep= sets the separator character This just exits the
to + which by default is a space. Named interpreter, don't try it!
arguments help you to remember which
parameter was which.

You can also define your own functions; more about that later.

We pass data into a function via its parameters. Optional parameters have default
values, which you may override if you wish. Some functions take no parameters at all,
they are invoked with an empty argument list ().

Functions can also return a value, or maybe no value at all which is called "None" in
Python.

Types of simple variables

Commonly used types

NoneType

numeric

3.1415926
float("NaN")
float("Inf")

complex(2,3)

"float"??

Just the abbreviation of "floating-
point numbers" which means that
the number of digits after the
decimal point is variable.

This slide shows only the most often used Python types. There are some other special
predefined types which you can look up in the documentation.

The Python data structures (lists, tuples, dictionaries etc.) are discussed in a separate
training unit.

Boolean operations

George Boole (1815-1864)

NOT AND OR
X not x X y Xx and y X y Xory
False True False False False False False False
True False False True False False True True
True False False True False True

True True True True True True

George Boole devised the algebra of simple two-valued logic named after him.
Statements can have only "True" and "False" values and these can be combined using
the 3 standard operators NOT, AND, OR as shown on the slide.

What to do on the weekend?

Stay at home

Yes v/

v
Go to the beach

In practically every program we need to take decisions and execute instructions
depending on logical conditions. Flowcharts, such as the one shown on the slide,
visualise the logical flow of the algorithm.

Logical decisions

The "then" branch

What to do on the weekend?

This code block is
executed if the condition __[if raining:
is True. Must always print("Stay at home")

be present. else:
if temp > 30:
The "else" branch print("Go to the beach") || | if statements
else: may be nested
This code block is

print("Bike tour")
executed if the condition .

is False. May be |
omitted. Indentation

In Python, code blocks (groups of
statements) must be indented
together. The grey vertical lines
(don't type them!) indicate the left
margin of the code blocks.

The "if" statement, which in one form or another is part of any programming
language, tells Python to execute different parts of code depending on whether a
logical condition is True or False.

The branches of the "if" statement are so-called code blocks that group statements
together. Code blocks must be indicated by indentation in Python (this is a general
feature of the language). Modern IDEs help you getting the indentation right.

10

Variationson i f

Multiple choices

Mutually exclusive options if age < 3:

r print("Enjoy childhood")

elif age >=3 and age < 6:
print("Go to kindergarten")

elif age >=6 and age < 18:
print("Go to school")

elif age >=18 and age < 65:
print("Go to work")

- |else:

print("Enjoy retirement")

elif is an abbreviation of
"else if". Use this construct to
decide between mutually
exclusive options. Other —
programming languages
implement this pattern with a
case or switch statement.

Conditional expression

celltype = "eukaryote" if has_nucleus else "prokaryote"
|
...this is equivalent to: A practical shorthand
if has_nucleus: Because we very often assign a value
celltype = "eukaryote" depending on a condition, instead of the
else: lengthy if-statement we can use a
celltype = "prokaryote" conditional expression.

Sometimes you need to decide between several, mutually exclusive options. Python
offers the if... elif ... elif ... else construct for this purpose.

Another variation is the "x = y if cond else z' construct which is a syntactic shortcut to
assign two different values to a variable based on a logical condition. The right-hand
side of the assignment ‘y if cond else z" is called a "conditional expression".

11

Data structure overview

Iterable sequence

[0] [1] -« [N-1]], Order matters
Elements are
identified by their
\ \ / indices.

Unordered set

Keys Values

You can search a ...to retrieve a value,

dictionary with a key like a phone number

such as a name... of a subscriber.
Dictionary

We have learnt how to store single data points in simple variables. Data structures
are software concepts for representing more than one data item that logically belong
together.

This somewhat abstract overview illustrates the most important data structure types:

1. Iterable sequences are made of a linear list of data items where the order of the
items matter. You look up individual data items through an index, which is an
integer >= 0.

2. Dictionaries work like a phone book. If you know the name of a subscriber (the
"key"), then you can look up his/her number (the "value") easily. The order of the
key-value pairs does not matter.

3. Unordered sets just store a bunch of data items. Only the fact that they belong to
the same group matters.

Most Python data structures are heterogeneous, i.e. the types of the individual items
within a data structure may be different. This is in contrast to e.g. R where all vector
elements must have the same type. There is actually a Python datatype called “array’
that stores numeric values which all must be of the same type but this is a special
case.

12

Basic Python data structures

Sequences
(ordered)

\

List

Dictionary

{"uno":1,"due":2}

(37, "bunny",)

["spam",42]

range(1l,5,2)

Other data structures Frozenset Set

collections module frozenset ({"fi","se"}) | [{"red","green","blue"}

array module
enum module
NumPy, Pandas, ...

Data structures can be immutable (constant) or mutable.

The slide shows only those data structures that we will discuss in detail. There are
some other data types that are used only in specialized circumstances, such as “bytes’
or ‘'memoryview’, these are not covered in this basic training.

13

String literals

Creating strings
| x = "It's a girl!"
Quiotes y = 'He said "Hello" to her.'
You may use single or double nogood =l"Do not mix quotes'l
quotes. You may use a ' within =

double quotes or " within single
quotes.

Always terminate the string with the
Triple quotes same quotation mark that was used
S at the beginning.

Triple quoted strings
whyy Gseil | Long comments
multiple lines"""

Triple single quotes like " are OK,
too. Use triple quotes to put multiline

Raw strings comments in scripts.
print("Two\nlines")] - -
print(r(Two\nlines")] N
\ Special characters such as \n (newline)
can be included in strings. In raw strings
| Raw string indicator | these are interpreted literally.

There is no difference between single-quoted and double-quoted strings in Python. It
is a matter of taste which one you use, although officially the single quotes are
preferred. | rather use the double quotes because in C, C++ and Java they indicate
strings (single quotes enclose single characters). Python, however, has no separate
character type.

Parts of strings

Accessing parts of strings
s = "Money"
s[0]
s[1:4]
Index 0 1 2 3 4
Characters M o n e Yy
Pl
Character access Index range ("slice")

[index] retrieves the index-th
character. Note that indexing is
0-based like in C,C++ or Java.

[first:last] selects the substring beginning at
index first and ending one position before
last. This way, the length of the slice is simply
last-first.

It is possible to add an increment like
[first:last zincr], this is rarely used in strings.

Individual characters and substrings can be accessed using the indexing operator [...].
Indexing is used the same way in all iterable sequences as we will see later.

The general form of the slice index is [first:last:incr] which selects the characters from
first to last with increments corresponding to incr. Try s[0:5:2] to see what happens!

Reverse indexing

Backward access
s[-1]
s[-4:-1]
s[=-3:]

Rev. index -5 -4 -3 -2 -1

Characters M o n e y
| ! \
Slicing backwards Reverse index
[first:last] selects the [—index] retrieves the
substring beginning at index index-th character
first and ending one position counting from the end.
before last. Look at the Note that s [-0] still
"Rev.index" row to understand refers to the first
why s[-4:-1] returns character of s!
"one"!

Reverse indexing uses negative indices, with -1 corresponding to the last position of
the string. This could be useful to process the string ends ("suffixes"). Slicing is
analogous to the normal "forward indexing", see example on the slide.

To get the last N characters of a string, use the index [-N:].

Note that in R a negative index means "not this element"; for instance s[-3] would
mean "every element except the third".

Working with strings

Find substrings

"one" in s

Fm—]

N "one" not in s

Containment s.find("one") <

Checks if a substring is t \ ¢

(not) contained in a Substring position

string. Returns a Boolean Method

result. Functions that belong to an TGS Eg, g ot
5 = g = first character of the

Number of characters ;’_:je“ are ca.II ed methf)ds % substring in the string, -
ey can be invoked using the 1if it is not found.

The 1length of a string. "dot notation".

This is a "free function".

Some string operations

len("Money")
"money" .upper()
"Python "+"is "+"fun" |7

version of the string. 3 % "pla" —
Lowercase conversion can Concatenation

be done with . lower ().
Note that methods can be Adding strings together.
invoked on string literals!

Case conversion

/

Returns an all-uppercase

Only a few often-used string methods are shown here.

17

Performing operations

Operator syntax

This is just "syntactic sugar" to
make certain often-used
operations easier to read for
humans. See the operator
Standard Library module.

String operation examples

"one" in "money"
len("money")
"money" .find("one")

v

A

A

Free function syntax

Free functions do not "belong" to any
particular object. len () is free because
so many kinds of data structures can have
a length. This design decision is a matter
of taste, however.

Method syntax

Invokes a method, i.e. a function
belonging to a software object
using the "dot notation”. In
words: 'Find "one" in the
object "money" '.

There are several ways of performing operations on a data structure (object) in

Python.

18

String formatting

Traditional substitution example
"%? = $f" % (";;i", 3.14) |:> "pi = 3.14"

 —

C-style formatting (do not use!)

%s means string, % £ float, ¥d integer etc. The
values are taken from the tuple after the %.
This is a relict from the bad old Python-2 times.

Modern formatting

"{} = {}".format("pi", 3.14)

"{1} = {0}".format(3.14, "pi")

"{man}'s wife is {woman}".format(woman="Eve",man="Adam")
A A y 1

! T —

Formatted string literal (since 3.6)]— Direct substitution: use this!

man = "Adam" The format string template is prefixed with £ and the
woman = "Eve" variables in the braces are evaluated directly. No need
f"{man}'s wife is {woman}" to invoke the format () method.

The traditional C-style formatting is mentioned only so that you can recognise it if you
see it in older code. Please do not use it when writing new scripts.

The new-style formatting offers lots of options which we cannot all cover in this
training. The slide demonstrates just the basic usage. Please refer to the
documentation: https://docs.python.org/3/library/string.html#tfformatstrings

19

Tuples are immutable, lists are mutable.

Lists and tuples

List or tuple
Index Value
0 "spam”
1 42
Indexing Values

Indices always start at 0. You
refer to individual elements or
subsequences ("slices") of a
list/tuple via indexing. The
order of the elements does

Lists/tuples, unlike strings,
are heterogeneous data
structures: the elements may
have different types. (Arrays
are special lists with a fixed

matter. element type.)

Lists and tuples are both linear sequences which means that the order of the
elements does matter. The elements are identified by their indices. Indexing starts at
0, just like in C, C++ or Java.

20

Creating lists and tuples

Creating lists

The brackets enclose the
list elements. Empty lists
are useful as start when
collecting data points
one by one.

1st = ["spam", 42]

el =[]

tup = ("spam", 42,)

et = ()

1st = list(("spam", 42,))
tup = tuple(["spam", 42])
list("string")

Creating lists and tuples

.
J

Conversion

Tuples and lists can be converted
into each other using the

list () ortuple() functions.
In general, they work on any
iterable sequence, hence
list("string") returns the
characters of "string" in a list.

Creating tuples

When making a one-
element tuple, always add
a trailing comma like this:
("uno",). The comma
makes the tuple, not the
parentheses!

The brackets [] or the parentheses () indicate to Python that you want to create lists
or tuples, respectively. Explicit conversion using the list() or tuple() functions are

rarely needed.

21

Element indexing

In the interpreter:
s = ("Ann","Bob","Cleo", "Dora", "Ed")
s[0]
s[1:4]
s[-1]
Index 0 1 2 3 4
Element "Ann" "Bob" | "Cleo" | "Dora" "E4d"
i N
Element access Index range ("slice") Reverse index
[index] retrieves the index- [first:last] selects the [-index] retrieves the
th element. Note that indexing subsequence beginning at index first index-th element counting
is 0-based like in C/C++ or Java. and ending one position before last. || from the end.
This way, the length of the slice is Note that s[-0] still
simply last-first. refers to the first element
It is possible to add an increment like || of s!
[first:last:incr].

List (or tuple) indexing works exactly as accessing the characters of a string. In this
respect strings are also ordered sequences with the restriction that all the "elements"
of a string must be characters.

22

"Shallow" and "deep" copy

In the interpreter:

XE=A[1Te2, 3]

y = X

z = xX.copy()
"Shallow" copy x[1] =5 ‘~| = =

X Deep" copy
aemesmpe Sy [pem——
list variable y still refers that z is assigned to a

copy of x's data. If an
element of x changes, z
does not see the change.

to x's data. If an element
of x changes, y "sees"
the change, too!

If you assign a list to another variable, then Python "shallow copies" the list, which
means that the underlying data elements are not copied. This improves performance
(copying a big list with a million elements can take loooong!), but the price we pay is
that the new list variable "sees" all the changes you make to the original list. The
solution is to invoke the copy() list method which performs a "deep copy". This
means that really all elements of the list are copied, giving you a completely
independent new list. In our example, changes to "x" are not seen by 'z and vice
versa.

23

A neat tuple trick

Swapping the hard way Pythonic swapping
X =3 x =3
y =5 y=>5
tmp = x] Y ey X]
= | print(x,y)
y = tmp
rint(x
P (x,¥) Non-Pythonic swap Preferred idiom

You need a temporary
variable tmp to swap
two values. Unless you

Look, Ma, no tmp ! This packs
y and x into a tuple and
unpacks them into x and y in

are using Python... one fell swoop.

Python often lets you express a programming pattern in a compact way. Swapping
two values are a good example.

24

ZEcl Common sequence operations
Preparation
s = ("Joe","Ann","Bob",)
Operation Example Result Comments
"Ann" in s True Use not in for the opposite effect
Containment
s.count ("Bob") 1 Number of occurrences
(7,3) + (2,8) (7,3,2,8)
Concatenation
2 * (7,3) {(7,3,17,3) (7,3)*2 also works
s[2] "Bob" Indexing stan_s‘ at 0, negative indices start
from last position.
Indexing s[0:2) ("Joe","Ann") | Slice length is last-first
s.index ("Bob") 2 !ndex of first occurrence or ValueError
if not found
Length len(s) 3 Separate function, not a method
Minimum/maximum nin(s) "Ann" Works only if elements are comparable.
max(s) Joe

These operations are supported by strings, tuples, lists etc.

25

ozl Mutable sequence operations [1]
Preparation Get back to original state
t = ["Joe","Ann","Bob",] t = list(s)
Operation Example New value Comments
t[2]="Eve" ["Joe","Ann", "Eve"] The indexed member is replaced
Indexed
assignment £70:21=["Eve" ("Eve","Bob"] Slice will be replaced with a
[0:21=1] g sequence
Copy t.copy() Returns "deep" copy, the elements are duplicated
t.reverse() ["Bob","Ann", "Joe"] In-place reversal
t.sort() ["Ann", "Bob", "Joe"] Elements must be comparable
" Sort in reverse order
Ordering t.sort(reverse=True) | ["Joe","Bob","Ann"] (descending instead of
ascending)
Use your own element
t.sort (key=cmp) depends on cmp comparison function cmp
(advanced)

These operations are supported by lists only.

26

ozl Mutable sequence operations [2]

Preparation Get back to original state
t = ["Joe","Ann","Bob",] t = list(s)
Operation Example New value Comments
t.append("Eve") ["Joe","Ann", "Bob", "Eve"] Appends a single element
Grow EI';:E??;;; ")) [‘fgia.’. ,"'xgge',']BOb £ Adds a sequence to the end
" " " "o o " im " Inserts element at the position
t.insert(1l,"Guy") ["Joe","Guy","Ann", "Bob"] iidicatad
del t[1)] ["Joe","Bob"] Deletes an element or a slice.
del t[1l:3] ["Joe"] del is a command!
t.clear() [1 Deletes all elements
Shrink " " " " oW " .
t.remove("Ann") ["Joe","Bob"] Finds and deletes element

Returns and deletes i-th
t.pop(1l) ["Joe","Bob"],returns "Ann" element, by default the last one
if index is omitted

These operations are supported by lists only.

Iterating on sequences

The for command Iterating a tuple

x will be set to the first, second, ... n-th s = ("Joe","Ann","Bob")

element of s in turn, and then the for x in s:
indented commands (the "body" of the print (x)
loop) following the for x in s: line

will be executed. Joe
Bob

Index 0 a b 2

Elements "Joe

Iteration variable

The elements of the sequence will l OHNNIE W ALKER. g //

be assigned to the iteration

variable, one after the other. KEEP WALKING. (*V

Iteration is a central concept in most programming languages. Python's for statement
is best understood on the examples of sequence iteration. There is another iteration
construct, the "while” which works differently.

The hands-on example shows iteration over a tuple. Note that other sequences (lists,
strings etc.) can be iterated over exactly the same way.

Skipping iterations

Index 0 1 2
Elements "Joe" | "Ann" "Bob"
Skip one iteration
- fox.: X in S,:, §
- 2 = Ann":] continue
Lee———- continue |
print(x) Skip the rest of the current iteration and
continue with the next. “Ann” will not be
printed, only "Joe" and "Bob".
Skip the rest
for x in s:
if x == “Ann”: -| Beaak
e break]
1 print(x) Leave the loop by break -ing out of it
et completely. Neither “Ann” nor "Bob" will
be printed, only "Joe".

Sometimes we want to skip an iteration or leave the loop earlier than expected. The
‘continue” and "break’ statements are used for these situations. Other programming
languages usually offer similar constructs.

range(N)

Starts from 0 by default,
goes up to N-1 so that it
has N elements. If N<O,
then the range will be
empty.

list(range(5))

[0; 125 3,4 1
list(range(3,5)) J
[3, 4]

list(range(3,9,2))

[3, 5, 7] ;

range(M,N)

[

range(M,N,S)

Starts from M, goes up to
maximally N-1 in increments of S.

Starts from M, goes up to
N-1 so that it has N-M
elements. If M2N, then
the range will be empty.

Ranges are objects representing regular integer sequences which are used quite often
to iterate over other sequences as we will see on the next slide. Because they are
objects, “print(range(3))" will actually print "range(3)". To see the elements of a range,
convert it to a “tuple’ or a list” first.

Iterating over ranges

Index 0 1 2

Elements "Joe" "Ann" "Bob"
Iterating over a range (don't run!) More Pythonesque way
for i in range(len(s)): for i, n in enumerate(s):

print(i, s[i]) print(i, n)
—) | I——)

0 Joe 0 Joe
1 Ann 1 Ann
2 Bob 2 Bob

Index and value Enumerating a sequence

Iterate over a sequence using a The enumerate function provides
range if you want to access both an iterator pair through which the
the index and the value of an index and value of sequence
element. elements can be accessed in a for

loop. This is the preferred style.

Often we need to iterate over a sequence so that both the index and the value of the
elements are required in the loop body. You can do this "analytically" by iterating over
the range defined by the length of the sequence and then looking up the value
belonging to the i-th index in the loop. The more "elegant" way of doing it is shown
on the right hand side. This idiom makes use of the “‘enumerate’ function which
returns both the index and the value of the elements of its argument in turn, and
then the for loop can refer to both.

31

List comprehension

" BOb "

"Joe" "Ann“
Make all elements
uppercase
"JOE" "ANN" "BOB"

Non-Pythonic way

u =[]
for x in s:
u.append(x.upper())

==
L]

List comprehension

u = [x.upper() for x in s]

Iterate over s

Filtered list comprehension

New list element

z = (1,2,3,4)

[2*x for X in z Ef x>2]

e

Input item filter

Only items matching the criterion are
processed. The result will be [6,8] .

The Python expression written
here will be evaluated for each
value of x and the results will
be placed into a new list.

List comprehension converts a sequence into a list by applying a transformation to

each element of the input. Such operations are very common in practice.

32

"Zipping" sequences together

mons "May "June" "July"

days 31 30 31

Iterate over two sequences together

mons = ("May", "June", "July")

days = (31, 30, 31)

for m,d in zip(mons, days):
print (£"{m} has {d} days")

Iterator variables J_[

m walks over the elements of May has 31 days
mons, d walks over the June has 30 days
elements of days in lockstep. July has 31 days

The idiom shown on the slide is very useful if you want to process the elements of
two sequences "together". The “zip" function really "zips" them! Formally, “zip®
returns an iterator tuple which will be used in the “for’ loop. You can refer to the
iterator tuple's elements by name as shown here.

Unlike physical zippers, Python's “zip™ can zip together even 3 or more sequences.
This is rarely used.

Condition-controlled iteration

| Think of a number |

-

| Initial wrong guess |

Correct
guess?

Congratulate user |—>

| Get user's guess |

.

Guess > Number

(\‘ Compare to
X number
Guess < Number v
| Tell user: "Too low" | | Tell user: "Too high"
e

In addition to iterating over sequences, Python supports condition-controlled
iteration which means that we execute a list of commands while a certain logical
condition is true. This is very useful if we do not know the necessary number of
iterations in advance.

We will play a game. Python thinks about an integer number and we have to guess it.
The script tells us if our guess is too high, too low or correct.

Thewhile loop

Run in the terminal!

./guess.py
I thought about a number between 1 and 100
Enter your guess:50

Too high

Enter your guess:25 while loop condition

Too low

Enter your guess:35 The expression controlling the loop must
Too low evaluate to a Boolean value. The loop
Enter your guess:42 body is executed while the condition is
Correct! True.

Congratulations, you solved the problem.

L

guess.py (details M)e script)

I—L\

while guess != secret:

Body of the while loop s

guess = int(input("Enter your guess:"))
As long as the condition is True, these if guess < secret:
instructions will be executed. If the print("Too low")

elif guess > secret:
print("Too high")

else:
print("Correct!")

condition is False when starting the
loop, then no iterations are done.

| wrote a script that plays the number guessing game with you. The essential parts
are shown on the slide.

What is the best strategy, i.e. how can you guess the secret number in as few steps as
possible?

Key-value mapping

Mapping keys to values

It is easy to look up the value given
the key. The reverse operation is
more difficult.

Hon';ﬁjacuu U r Ky-ryaoacuuk

npocm., 41 A;goggg
6acun H O Tlepsomakckasn, “
o 50 oy 554295
BYHHHHKOBCKAA Ve
B e, o B1 7_6.1b,
Kon6acun @ H Hosonecqauaa,_ 2
xopi. 54 g
Hon6acvua E A IlaBliosckas, 2/4 21799
HonGacHukoea T B PyselHulH 1 g P
1/21 i l'-,i?;-G.'a__Da-

Kon6aco A M yi. Huposa, 22 B84209
Kon6acoe M 3 Oc'ranoscnoe ARG
m., 65 % N TSP IIT.65°68-

Often we need a data structure that knows about "associations" between items,
much in the same way as a phone book associates people with their numbers.
People's names are the "keys" and their phone numbers are the corresponding
"values". If you know a person's name, it's easy to look up his/her number in the
phone book: the relationship between the key and its corresponding value is
unidirectional.

In Python such a data structure is called a "dictionary". Other programming languages
may call it an "associative map" or a "lookup table".

Creating dictionaries

Key-value pair C ll o
| | | ol111ns
Creating a dictionary l_lﬂ Very First
¥ ¥
d = {"uno":1, "dos":2, "tres":3} SPANISH
d2 = dict(uno=1, dos=2, tres=3) Dicﬁonarg
PO\ S

Sequence of pairs o

Any sequence (list or tuple) of 2-element L1y~

sequences (lists or tuples) specifying the AR

key-value pairs can be used. Spanish Words

SN
Less common ways L. Hashing
d3 = dict([("uno",1),("dos",2),("tres",3)]) hash("uno")
d4 = dict(zip(("uno","dos","tres"),(1,2,3))) |
Quick lookup

Zipping A "hash" is an integer

You can zip () two sequences containing calculated from an object. Can

the keys and values together and then pass be used to compare dictionary

the result to the dict () function. keys quickly.

Dictionary keys must be "hashable". A hash function makes an integer number out of
an object (how this is done would take us too far). Python uses the key hash values to
speed up dictionary lookup.

Not all data types are "hashable". For instance, tuples can be dictionary keys, but lists
can't. Most often we use strings as dictionary keys.

The values of a dictionary, on the other hand, can be anything, including lists, lists of
lists, other dictionaries, ... etc.

reference Wi {=Y:[ol0 0 DNa pperatio
Preparation
d = {"uno":1, "dos":2, "tres":3}
Operation Example Result Comments
Contsinaii “gpagn davd TG Check if a {(ey is present. Use not in for
the opposite effect
d["dos"] 2 Raises KeyError if key is not found
Lookup d.get("uno") 1 Returns None if key is not found
e = Returns the 2 parameter (the default
SimeE cineo sy 291 e value) if key is not found
Length len(d) 3 Separate function, not a method
Copy d.copy() Returns "deep" copy, the elements are duplicated
S ’ min(d) "dos"
Minimum/maximum max (d) "uno" Works on the keys, not on the values
" " " " f he Kev vi ks with
list(d.keys()) [ur"ug ’ gos Sequence from the key view (works wit
Views and conversions ¢, tres’] tuple() aswell)
to sequences. .
e tios ot list(d.values()) [1,2,3)] Sequence from the value view
preserved since [("uno",1),(.
Python 3.8 list(d.items()) "dos",2), ("t Sequence from the key/value pairs as
" tuples
res",3)]

In principle dictionaries are not sequences, i.e. the order of the key-value pairs is not
well-defined. That was the case until Python 3.7. Since Version 3.8, Python
dictionaries preserve item insertion order. However, you are well advised not to rely
on this feature.

o2 Mutable dictionary operations
Preparation Reset to original
do = d d = do
Operation Example New value* Comments
Indexed " P {"uno":1, "dos":22, .
assignment d["dos"] = 22 "tres":3} The value is replaced
d["cinco"] = 5 '('t:::" ;' :g:coz : 5) A new key/value pair is added
Hc s
The contents of the argument is
Grow " ", " ",
d.update (5(:?2:" :;' g:iszé merged into the calling object.
{"seis":6,"ocho":8}) "ocho" :8; o Values for matching keys will be
overwritten
& p i W % - Deletes by key. Raises
del d["dos"] { uno®sl, “trest:3} KeyError if key is not found!
" " " " Returns value by key and then
Shrink {"uno":1,"tres":3} ¥ KeY

d.pop("dos")

Returns 2

deletes it. Raises KeyError if
key is not found!

d.clear()

{}

Deletes all elements

39

Dictionary iteration

Key "uno" "dos" "tres"
Value 1 2 3
Iterating over keys Iterating over items Iterating over values
for k in d: for k, v in d.items(): for v in d.values():
print (k) print(k, "=", v) print(v)
L I J L |) L | J

Key iteration Key-value iteration Value iteration
Dictionary iteration Conceptually, a dictionar)f isa The values () method
runs over the keys by sequence of key-\{alue pairs called provides an iterable view of
default. items". You can iterate over the the dictionary values.

keys and values "in parallel" using

the items () method.

Because you can look up the values via their keys, iterating a directory over its keys
should be sufficient. This is why by default directory iteration runs over the keys,
although you can get an iterable object by invoking the “keys()" method, which is
rarely used. Iterating over the values or "in parallel" over the items can be
convenient.

Remember that dictionaries are not sequences, and before Python 3.8 item order
was unspecified. Since Version 3.8 dictionaries preserve item insertion order.

40

Dictionary comprehension

Word lengths

non

w = ("we","like","Python") .
wd = {x:len(x) for x in w} [=—)f {"we":2,"like":4, "Python":6}
t e

L.

New dictionary item | Iterate over w l

The key and the value must be
separated by a colon (:). Both can
be arbitrary expressions. Swapping dictionary keys and values

{value:key for key,value in wd.items()}

U

{2:"we" ,4:1ike",6:"Python"}

Dictionary comprehension is analogous to list comprehension and offers an elegant
way of swapping keys and values. Note that the values must be hashable in order to
serve as keys.

41

Sets in biology

SES]

1

=

X Eagle k. Duck Penguin /

R 3 i Ostrich

\\\\\\\\\\\\\\\\

Sets are mathematical objects that group "things" together without any particular
order. Among birds we may define the set of those that can fly ("flyers") and those
that can swim ("swimmers"). A duck belongs to both sets. Eagles can fly but not
swim, and penguins can swim but not fly. The poor ostrich belongs to neither set.

42

Creating sets

Using a set literal

Note the similarity to the dictionary literal:
you can regard sets as "dictionaries with
only keys and without values".

Creating sets
I

flyers = {"eagle", "duck"}

swimmers set (["duck","penguin'])
= S
\ Converting from a sequence
Lists or tuples may be passed to the
set () constructor function.
Frozen sets

birds = frozenset(["eagle",duck","penguin", "ostrich"])

Immutable set

Use this if you do not need to change the
elements of a set.

Set construction is quite similar to how dictionaries are built.

43

reference Read-only set operations

Operation Example Result Comments
Membership "eagle" in flyers True Use not in for the opposite effect
flyers.issubset (birds) i i
flyers <= birds True Subset (incl. equality)
flyers.issuperset(birds) 5 .
S False Superset (incl. equality)
Containment flyers >= birds
flyers < birds True Proper subset (full containment)
flyers > birds False Proper superset
{"eagle",
flyers | swimmers "duck", Union
"penguin”}
Set operations flyers & swimmers {"duck"} Intersection
flyers - swimmers {"eagle"} | Difference
£1 ~ swi {"eagle’, | o metricdiff
yers ~ swimmers "penguin"} ymmetric difference
Cardinality len(birds) 4 Number of elements in the set
Copy birds.copy() Returns "deep" copy, the elements are duplicated

These methods are supported both by ‘set” and “frozenset'.

The containment operations set<=other and set>=other are available as methods in
the form of set.issubset(other) and set.issuperset(other), respectively. The argument
‘other’ can be an iterable sequence, not just a set.

The set operations |, &, -, can be invoked as the methods set.union(other),
set.intersection(other), set.difference(other), set.symmetric_difference(other) as
well. In these "non-operator"” methods the parameter "other’ can be any iterable
sequence, not just a set.

44

reference Mutable set operations

Operation Example New value* Comments
flyers |= swimmers '(‘p::gi(ien"' }duCk 4 In-place union

In-placeset | flyers &= swimmers {"duck"} In-place intersection

operations 3
flyers -= swimmers {"eagle"} In-place difference
flyers "= swimmers {"eagle", "penguin"} In-place symmetric difference
flyers.add("swift") ‘{'s:igi?} frauckey A new element is added

Grow
flyers.update({"eagle","duck", The cont:pti o:;he aI:.gument
{"magpie", "swift"}) "magpie", "swift"} is merged into the calling
object.

Deletes an element.
flyers.remove("duck") {"eagle"} remove () raises
flyers.discard("duck") g KeyError if the element is

2 not found!
Shrink
£1 Deletes an element randomly and returns it. Use for "consuming"
yars-panl) a set in an iteration loo
p.
flyers.clear() {} Deletes all elements

The in-place set operations |=, &=, -=, A= can be invoked as the methods

set.union_update(other), set.intersection_update(other),
set.difference_update(other), set.symmetric_difference_update(other) as well. In
these "non-operator" methods the parameter “other’ can be any iterable sequence,
not just a set.

45

Modelling the world

Software maps a slice of reality onto data structures and algorithms.

When we write a program, we always model "real" things in software, where objects
of mathematical reality (e.g. numbers) also count as "real". There are more than one
ways to model the same entity.

46

Real and software objects

Operations

= switch on/off
= make coffee
= refill supplies

L J

(Data) Members Methods

The internal state of an
object is modelled by
variables called "members".
Member variables belong to
a given object and can be
manipulated only by
referring to the object
containing them.

Software objects can be
manipulated by functions
belonging to them, also
called "methods". Methods
can change the internal
state of their objects in a
safe and controlled manner.

In this training we will model my espresso machine.

Real objects have internal states. For instance, a coffee machine can be in an OFF or
an ON state. The amount of water and beans also belong to its internal state.
Software objects model the internal state by appropriately chosen variables. We say
that these are "member" variables because they belong to ("are the members of") a
given object. This is in contrast to the "free-standing" variables we have used until
now; they were not "owned by" any particular object.

Real objects can be manipulated by us. For instance, a coffee machine can be
switched on or off, you can press a button to make coffee, you can fill up the water
tank or the beans holder. Similarly we can manipulate software objects by invoking
"member functions", also known as "methods". Methods belong to objects much in
the same way as member variables. They may change the internal state of the object
they belong to. Free-standing functions had no such special relationship with any of
the free variables: they just take arguments.

47

The blueprint
("type") of a coffee
machine

VAR
A

Instances of coffee

Type, class, instance

Simple types I Objects
"An integer o o o
Concept modelled G "A coffee machine
The type int class CoffeeMachine
Variables storing | x = 42 cml = CoffeeMachine()

instances y int(3.1) | cm2 = CoffeeMachine()

machines (yours, mine...)

Is there a difference?

Actually, no. In Python, really and truly everything is
an object. The built-in type int is a class, a blueprint
for storing and handling integer numbers. Each
integer variable stores an instance of an integer
object. Only the syntax is different when you define
your own classes.

We have seen in the Introduction that types represent the properties of data. Objects
also have a type that specifies their properties, it is called the "class" of the object. A
class can be regarded as the "Platonic ideal" of the objects being modelled, or a
"blueprint" or "recipe" that defines the objects. We say that an individual object is

the instance of its class.

Because in Python everything is an object, the built-in types we have seen so far are
also classes. Their instances store data (an int object stores an integer number, a str
object stores a sequence of characters, etc...) and they have methods associated with

them that define what you can do with the data.

48

Designing a coffee machine object

CoffeeMachine
on —

ey Main switch status

This should be a Boolean

Data water - variable. Initially it is set to
False (the machine is off).
coffee -«
Supplies

main_switch()

These could be of type £loat

but for simplicity we model them

refill (what) as int. We assume that one
unit of water and one unit of

\TI coffee are needed per cup.

All these functions change the internal state of the coffee
machine. The make_coffee () method will return a string
and runs only if the machine is switched on and there are
enough supplies. The re£ill () method takes a string
parameter what specifying whether water or the coffee
beans need to be replenished.

Methods | make_coffee()

The methods

This is how a CoffeeMachine object would look like. It is essentially a data structure
that has methods operating on its data. Together they define the internal state and
the behaviour of the object. The programmer must think very carefully about which
features s/he wishes to model, this design phase can take quite long in more complex
cases.

Where to put the class definition?

kitchen.py]— Modules

| class CoffeeMachine l A module is a Python file
containing the definitions of

| classes and/or standalone

| class Kettle

functions.
| ...other classes, functions, ... l
Import command Access an item explanation

import kitchen kitchen.Kettle Every thmg.:s‘:mp orted, module
name prefix is required

from kitchen import * Kettle ey thmg. fs/insported; module
name prefix not required
Only the named item(s) are

from kitchen import Kettle |Kettle imported, module name prefix
not required

Class definitions are usually kept in separate source files called "modules". Modules
help organise the source for larger projects. They may contain stand-alone function
definitions and data as well.

To use the entities in a module, they have to be imported first.

Large software projects

Package house
Packages house Package apartment

— __init__.py

Directories containing an L— apartment Module kitchen
__init__ .py fileare — init_ .py
considered packages by / l— kitchen.py _
Python.. }— bathroom.py
Packages may contain sub- L— bedroom.py :
packages as subdirectories | -
or modules as Python files. \ﬁ_'
Modules
Python source files. They | Module bathroom |
may contain classes,
functions, variables, ... | otile bedranm |

| ...other modules... |

Importing a module from a package hierarchy

from house.apartment import kitchen ~-other packages...

Python uses packages and modules to organise large software projects. Modules are
Python source files which can contain classes, functions or pieces of data. Modules
can be bundled together in packages that are represented by directories in the file
system. Packages may also contain other packages. A package directory is labelled by

a (usually empty) file with the name "__init__.py".

51

Importing a class

Module kitchen (kitchen.py)

class CoffeeMachine

Import a class

_[

We import the class
CoffeeMachine from a module
called kitchen. This makes the
class available in the Python
interpreter. Classes import-ed this
way do not need the module prefix.

Get the class

from kitchen import CoffeeMachine
cm = CoffeeMachine()

Creating an instance

The syntax looks like a function invocation: the
name of the class followed by parentheses. We will
see later that it's indeed possible to pass
parameters to the object creation method.

This creates a Cof feeMachine instance and
stores it in the variable cm.

We use here the from ... import ... syntax to get access to the CoffeeMachine class. It
is also possible to import everything from a module, but in that case we need to
prefix each class name with the module name using the dot notation which is quite

cumbersome.

To create an instance of a class, we invoke its name as if it were a function. What
really happens in the background is that two methods, __new__() and __init__() are
invoked. When you write your own class, you can define the __init__ () method
yourself: here you can initialise the members of the object and prepare it for first use.

This is called a "constructor" in other object-oriented languages.

52

Accessing data members

Reading data members
a Check the state
You can refer to the data members of an
object using the "dot notation": S on :> False
objectname.membername cm.water 3
Each object instance has its own data cm.beans — 4
members.
Member storage All at once:
Behind the scenes the data in a Python {'beans':4,
class are kept in a dictionary with the cm.__dict__ :'; 'on':False,
variable names as keys. 'water':3}

Changing data members

Data members in Python are public,
they can be read and written directly.
This is convenient but insecure as it is
possible to set nonsense values.

cm.on = True
cm.water = -3

cm.beans 99

As we have seen already when invoking member functions (methods), the "dot
notation" in Python expresses a "belongs-to" relationship. For instance, ‘cm.on’
means that the data member “on” belongs to the object stored in ‘cm”. Since each
instance is different, the dot notation is needed to distinguish between the on/off
status of my CoffeeMachine from yours.

Python allows direct manipulation of the data members because it can be
convenient. This convenience, unfortunately, also allows the user to set member
variables to some nonsense values, like in the example on the slide where the
amount of water is set to -3 units.

53

Encapsulation

Private access

Private data members can be
manipulated through methods
of the object only: read via
"getters" and written via
"setters". The setter methods
can do error checking. This is
the approach followed by C++,
Java, Ruby and some other OO
languages.

Public access

This is the default Python
behaviour. It is fun if you know
what you are doing but entails
certain risks such as
circumventing internal
constraints ("class
invariances").

Encapsulation is one of the three most important aspects of object-oriented
programming. Python does not enforce it which is considered a weakness by some.
As always, there is a compromise between safety and usability. Guido van Rossum
decided in favour of ease-of-use. It is possible to "fake" private data members in
Python: just prepend an underscore in front of the name. This is not foolproof,
though.

The paintings ("La maja vestida", "La maja desnuda") on the slide have been created
by Francisco Goya. Because the Naked Maja was considered politically incorrect at
the time, Goya was questioned by the Holy Inquisition. Luckily he was not prosecuted
as his defense of following an artistic tradition was accepted. The paintings can be
admired in the Prado in Madrid.

54

Accessing "hidden" members

Define a Person class Hiding a data member
class Person:] If its name starts with a "dunder”
def _ init__ (self, name): (two underscores), then the member
self._name = name J will be "hidden".

@property Read-only access
def name(self):
return self. name \ The "hidden" member's value may

be returned with a property method.

Create a Person object

p = Person("Mary")
"Hidden" member

. AttributeError will be raised.
print(p.__name)

Read-only access via property This works!

p.name]\ You cannot assign a new value
though, access is read-only.

The @property decorator can be used to provide "read-only" access to "hidden" data
members. Note, however, that there is no real privacy (encapsulation) in Python. In
fact, the __name member in the Person class gets "mangled" to _Person__name and
can be accessed as such directly.

Just follow the Python philosophy that "we are all consenting adults here". Putting
one or two underscores in front of a class member only signifies an intention that this
member is not to be used directly. You can if you want to, it's just not considered
good form.

55

Invoking methods

Method invocation =
Turn the machine on

We "switch on" the machine:

themain_switch () method eon . . : E"alse X X ,

changes the value of the on cm.main_switch() :) Machine switched ON
=) True

data member. gmeon

Make coffee!

—[cm.make_coffee() :> 'Enjoy this cup of coffee!'
cm.water E— 2
cm.beans =3

Making coffee |
More state changes

This method returns a string

result. The inter;?reter prin‘ts it Water and beans have been
unless you save it to a"v.ar:able. reduced by 1 unit after a cup of
The method also has "side coffee has been made.

effects": it changes the water and
beans amounts.

The ‘'main_switch()" method just toggles the value of the “on’ data member: if it was
False (meaning "the coffee machine is off"), it will be set to True ("machine is on").

The ‘'make_coffee()" method returns a result, just like many ordinary functions do. In
addition it reduces the amounts of coffee beans and water by one unit each as "side

effects".

Murphy's Law

Keep making coffee...

cm.make_coffee()
cm.make_coffee()

u ...until...

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File ".../scripts/kitchen.py", line 65, in make_coffee
raise Exception("Water tank EMPTY")
Exception: Water tank EMPTY

Handling errors

When something goes wrong then an exception should
be raise-d. This condition can be handled by the caller
of the method that raised the exception. Here we are
notified that water must be refilled. No cup of coffee
was made &

Exceptions are objects that represent errors or other "strange" conditions. When
something "bad" occurs, you raise an exception. It is possible to store data in
exception objects that describe what happened, most often this is an error message.
In our example the problem was that the coffee machine ran out of water. The
make_coffee() method raised an exception which is an instance of the standard
Exception class and put the error message in it.

Exceptions can be handled in some other location in your code, i.e. they can be
analysed and appropriate action can be taken. If you do nothing, the exception is
finally handled by the Python interpreter. It prints some traceback information
indicating where the problem happened. This is not too nice... We will learn later how
to handle exceptions.

57

Methods with arguments

Methods with arguments

Methods can have arguments much like ordinary Fix the problem!

functions. We could have defined a cm.water 0
refill water() andarefill beans() cm.refill ("water")

method but it is simpler to define a re£ill () ocm.water 3
method and tell it what to refill in the form of a

string parameter.

Continue playing!

Instead of changing the data members directly, it is more prudent to modify an
object's state by passing data into it via "setter functions". In our coffee machine
model the ‘refill()" method is such a "setter function". As we will see later, it knows
how much water or coffee it is supposed to fill and thus makes sure the
CoffeeMachine object's internal state is always correct.

58

Base and derived classes

Inherited members .
CoffeeMachine PN msm ber BetterCoffeeMachine
on You can add new qata &h
water members to a derived water
coffee class but cannot take \ coffee

main_switch()]\ away inherited ones. milk
make_coffee()

i main_switch()
BRLiT1 (what) - Inherited methods H

/

make_coffee()
£ill (what
\ Overridden method — | “:* (what)

make_cappuccino()

You can change the \
behaviour of an inherited
method in a derived New method

class. (We need to refill
"milk" as well as "water"
and "beans".)

Adds extra functionality to the
derived class.

Inheritance plays an important role in object-oriented programming. It supports code
re-use, and helps model "is-a" relationships. The BetterCoffeeMachine class can do
everything the CoffeeMachine class did: better coffee machines are coffee machines.
In addition, the BetterCoffeeMachine can make cappuccino. Generally, derived
classes have more data members and methods than their base classes, but this is not
mandatory.

The BetterCoffeeMachine class

Module kitchen (kitchen.py)

Import the class

| class CoffeeMachine |

We start by import —ing the class

BetterCoffeeMachine from the 3
kitchen module. This makes the class | i b o A S |

available in the interpreter.

Import and create an instance

[from kitchen import BetterCoffeeMachine

—[bem = BetterCoffeeMachine()

Create an instance

This creates a
BetterCoffeeMachine object and
stores it in the variable bcm .

It turns out that the “kitchen™ module already contains the "BetterCoffeeMachine’
class as well © . We can ‘import’ it exactly as we did with the “CoffeeMachine" class,
and then create an instance.

60

Using BetterCoffeeMachine

Inherited methods

The methods inherited from the
base class:main_switch(),
make_coffee() can be invoked
without any changes.

The digital barista
bcm.main_switch() 5’) 'Machine switched ON'
bcm.make_coffee() Y 'Enjoy this cup of coffee!’

bcm.make_cappuccino() = 'Enjoy your cappuccino!'

bem.milk E) 4

bem.refill("milk")

New/overridden methods

In addition you can now use the
methods defined in the derived
class as well. The refill ()
method was overridden, it accepts
the parameter "milk" as well.

Let's try out the BetterCoffeeMachine to convince ourselves that the methods
inherited from CoffeeMachine still work the same way, and that in addition the new
and/or overridden methods also work as expected.

Class hierarchies

CoffeeMaker

Data members...

Methods...

Ny

EspressoMachine

FilterCoffeeMaker

Data members... Data members...

Methods... Methods...

I

SuperEspressoMachine

Object-oriented families

More than one class can be derived Data members...
from a base class, and derived
classes can serve as base classes to

even-more-derived classes.

Methods...

A Python class can inherit from more than one base class. This is an advanced feature
that we won't discuss in this introductory course.

Python class source code

Indentation

module.py

The logical block structure is
indicated by indentation in
Python. The class definition must
be indented relative to the
class keyword. The body of a
function is indented relative to
the def keyword. C++, Java, R
use { } to delimit logical blocks.

class SomeClass:

Initialiser

Invoked when a new object is
created. The first parameter is
always self . Additional
parameters may be used to pass
data to the new object.

Method

Z

"

Explain what this class does.
blabla...blablabla...

—i—j# ... optional class variables ...

def init_(self, params):
Explain how the class is initialised.
... other commands ...

def some method(self, params):

wun

Method to do something.

... other commands

Comments

... other met
A triple-quoted multiline string

The first parameter is always
self. This is how the method
can refer to its containing object.

immediate after the method (or
class) header line explaining what
the method (class) does.

This slide shows the general layout of the source code of a Python class. We will
analyse a concrete example, the source of the CoffeeMachine class, in the following

slides.

In the following | will colour the Python keywords blue. This may not correspond to

the syntax colouring you see in your editor.

63

Class variables

kitchen.py

The archetype
or class of all
coffee
machines

class CoffeeMachine:
Instances of the “CoffeeMachine™ class
model a very simple coffee machine.
-- Class variables --

[initially on

L water capacity
beans_capacity

False
3
4

Class variables CoffeeMachine class variables

initially_on: this will be the initial value of
the on member variable

water_capacity: the capacity of the water
tank, enough for 3 coffees

beans_capacity: enough beans for 4
coffees

These variables belong to the class and not
to the individual instances. If you change
them, all objects of the class will "see" the
change. Here we use them to define useful
initial values for the instance data members.

Class variables are most useful when they represent some class-wide constant values.

Note, however, that (unlike in C++ for example) there are no "const" variables. Class
variables are also public, they can thus be changed "from the outside" which can lead
to various strange errors. You must be very careful not to mix up class and instance
variables. If you set a class variable through an instance, then automatically an
instance variable with the same name will be created, leading to further confusion.

64

Creating an instance

Uninitialised memory

Before a new object is created,

the part in memory it will
occupy is filled up with some
random garbage.

Newly created object

After initialisation the data
members have meaningful
values and the instance is
ready to be used.

&
' g"/ é

A

CoffeeMachine

on = False

- 00101010010 :
10100111001 :

Data water = 3

> beans = 4

main_switch()

101000101111
101010100101

000111 Methods | make_coffee()

refill (what)

Creating a new object instance is analogous to unboxing a gadget. At the end you
have to make sure that the gadget is set up properly.

In programming terms, the memory set aside for a new object first contains random
bits. We must set all those bits to well-defined values before we can use the new
object. This task is performed by special methods called "constructors" in other
object-oriented languages such as C++ or Java. In Python, first a method called
__new__()is invoked which takes care of basic object construction. Programmers
rarely if ever have to deal with this method directly. After __new__(), a second
method called __init__() will be invoked. This method is responsible for the proper
initialisation of the data members. Apart from very simple cases your classes always
must have an __init__() method.

65

Initialisation

self

Creating a new object

cm = CoffeeMachine()

A method must know

the instance it belongs kitchen.py

to. This information is
provided by the first
parameter called self
by convention.

class CoffeeMachinef

| —

def __ init__ (self):
[self.on = CoffeeMachine.initially on
L self.water = CoffeeMachine.water_ capacity

Iself.beans = Coffeenachine.beans_capacityl

=

p

The __init__ (self, ...) method

CoffeeMachine initialiser

Initialises a new object automatically at
creation time. May take additional
parameters that can be used to "configure”
the new object.

The double underscores ("dunders") indicate
that this is a "special method".

The member variables are created by assigning
initial values as specified by the class variables.
The member variables must be referred to
through self because they belong to the
instance, the class variables through the class
name because they belong to the class itself.

Most non-trivial classes will need some sort of initialisation to make sure the newly
created objects are in a well-defined state. Initialisation usually involves setting the
member variables (remember, assignment automatically creates a variable in
Python!).

If the __init__() method takes additional parameters then it is possible to configure
the new object in any way you like. In the example we could have written an
__init__() method that fills the water tank only to half its capacity, for instance
(although this would not have been terribly useful).

66

Example of a "setter" method

kitchen.py

class CoffeeMachine:

[def main_switch(self):
self.on = not self.on

print("Machine switched",
"ON" if self.on else "OFF") z
\

A simple "setter" method CoffeeMachine "on/off switch"
Example of how to manipulate the The on member variable is "toggled” by each
object state. This method returns invocation: if it was False, it will become
no value, but changes a member True and vice versa. The second parameter of
variable and prints a message as a print () evaluates to "ON"if self.onis
"side effect". True, and to "OFF" otherwise.

The main_switch() method demonstrates how to write a simple "setter" method in
Python. "Setters" manipulate the internal state of the object they belong to. They
may take parameters such as the new value of an internal data member, and they

may return a result, e.g. the old value of the variable. In our simple example none of
this is necessary.

Making decisions

T USED T0O BE
INDECISIVE... ey
NOW I™M NOT SURE.

class CoffeeMachine:

def refill(self, what):
if what == "water":
self.water = CoffeeMachine.water_ capacity
elif what == "beans":
self.beans = CoffeeMachine.beans capacity
else:
Logical decisions H errmsg =’"Cannot refill {}".format(what)

And now what??...

The if statement can be used to
execute different statements |

depending on a logical condition. - -

Here we see the full form: the Refilling the coffee machine

elif ("elseif*)and else Depending on the actual value of the what

branches are optional. You can parameter, either the "water tank" or the "beans
have more than one elif holder" will be refilled to their standard values
branches, but only O or 1 else indicated by class variables. If any value other than
branch at the end. Note the "water" or "beans" is passed to the method, then
indentations of the branches. we have a problem...

Variants of the if ... else construct exist in most programming languages. The idea is
always the same: if the condition is true, then execute the first branch, otherwise
execute the branch after "else". The "else branch" is optional, if omitted and the
condition is false, then execution continues directly after the if.

More complicated decision paths can be encoded by using "elif" branches. "elif" is
the shorthand for "else if", and is also followed by an expression that evaluates to a
Boolean value. In the refill() method above, IF the parameter ‘what™ had the value
"water", then the water tank is filled up, otherwise IF the parameter "'what™ was equal
to "beans" then the coffee beans are replenished. If neither condition is true, then
the “else’ branch should be executed. We construct an error message, but then...
what shall we do?

68

Errors

Module exrr (err.py)

Parse name and year of birth

def name_yob(line): This function takes a string of the form
f = line.split() "Anna 1998" and returns a tuple like
return £[0], int(£f[1l]) ('Anna',1998). If all goes well, that is...

Try the function!

. N % ;f
from err import *

name_yob("Anna 1998") =) ('Anna‘', 1998)

Make a mistake!

name_yob("Anna") ﬂ IndexError: list index out of range
Make another mistake!

name_yob("Anna Lisa") ﬂValueError: invalid literal ...

| wrote a simple function ‘name_yob()" that takes a string and parses it into a tuple
consisting of a string (a person's name) and an integer (the person's year of birth).
The function lives in the "err" module, together with some other functions (see
following slides). When you invoke “name_yob()" with a string argument that
corresponds to the specification then it works. However, | was lazy and did not add
any error handling. If you invoke the function with a name only, or if the birth year
cannot be converted to an integer then we get errors.

69

Handling IndexError

try to run some code Module exrr (err.py)

If an indexing error happens in this Sie s
clause, then an IndexError def safe_index(line):
exception is raise-d. \ try:

return name_yob(line)
except IndexError as err:

print(f"Handled: {err}")
We take care of the error here: return None, None
print a message, or maybe correct hiee

the input, or just give up... 1

Handle the exception

/

Exception reference

The construct as err lets us to refer
to the exception object in the except
clause and get information about the
error that occurred.

Correct input

safe_index("Anna 1998") :> ('Anna', 1998)

Missing second field

safe_index("Anna") Hlﬂandled: list index out of range

Python uses an error-handling mechanism called "exceptions". The idea is that when
an error (or some other exceptional condition) occurs, then this is signalled by
"raising an exception" (like raising a red flag). Exceptions are objects that usually carry
information in their data members about the problem.

Statements that may raise exceptions are wrapped in a "try-block". If everything goes
well, then the code in the try-block just runs. However, if an exception is ‘raise’-d
somewhere inside, then Python looks for an “except’ clause for that kind of
exception. If a matching “except’ clause is found, then its body is executed. Here you
can take care of the error: you may just print some message, write to a log file, or
even try and correct the situation somehow.

If there is no “except’ clause for the exception, then the Python interpreter will
handle it in a rather drastic manner: execution stops and a long "stack trace" is
printed, which is embarrassing. Well-written scripts handle all possible exceptions on
their own.

You can try exception handling with the ‘safe_index()" function, also from my "err"
module.

70

Handling several exceptions

Module exxr (err.py)

def safe_ny(line):

7 try:

Handle exceptions together return name_yob(line)

[except (IndexError, ValueError) as err:
print(f"Handled: {err}")

return None, None

List them in a tuple in the
except clause if all of them are
to be handled the same way.

Correct input
safe_ny("Anna 1998") :> ('Anna', 1998)

Missing second field

safe_ny("Anna") Handled: list index out of range

Wrong year

safe_ny("Anna Lisa") ~| Handled: invalid literal ...

If several kinds of exceptions are to be handled the same way, then you can group
them all in a tuple in the “except’ clause. Otherwise you can have several ‘except’

clausesina ‘try’ block.
This is implemented in the “safe_ny()" function from the "err" module for you.

Thetry ... except construct

Check for errors The general structure
All statements are try: Yes v/
executed unless some I statement _
exception is raise-d. “ee
| except SomeError as err: No X
Handle errors statement
Atleast.one except /: finally:
clause is mand_atory, the clean up
others are optional. /
L 588 v

On the way out

Handling different exceptions
Optional. Always execute,
regardless whether an except SomeError: T
exception occurred or not. statement —| Handle SomeError, or.. |
Use for cleanup cee J
operafions_ except OtherError:
statement —| ... handle OtherError, or.. |
except:]
statement —| ... deal with any other error |

This slide does not discuss all the fine details of the try...except language construct
(there are many). The essence: the statements in the “try" block are executed. If no
exceptions are raised, execution continues after the end of the “try" block. If an

exception is raised, then Python looks at the “except’ clauses following the “try" block.

If an “except’ clause is found that catches the correct exception class (remember,
exceptions are objects!), then the “except’ code block is executed.

If there is an optional “finally™ block, then its statements are executed "on the way
out", irrespective of whether an exception has been handled or not. This is useful for
"clean-up" operations such as closing files etc.

You may have more than one ‘except’ block, each of them handles a different kind of
exception. Only one of them is executed, so it's a good idea to order them from the
most specific to the most general. Which is an “except:’ clause that does not specify
any exception type: this handles "everything".

“try” blocks may have an “else’ clause after the exceptions, this is executed if no
exceptions have occurred. | have not seen any important use case for this feature
though.

72

raise exceptions

kitchen.py

class CoffeeMachine:

def refill(self, what):
if == "water":

.water = CoffeeMachine.water capacity

'beans” :
Raise a red ﬂag' self.beans = CoffeeMachine.beans capacity
. . else:
I.e. an exception errmsg = f"Cannot refill {what}"
lraise ValueError(errmsg)l

Raising an exception

When something goes wrong in a function or
method, it can raise an exception to indicate the
problem. Exceptions are objects and can contain
error messages or other data that describe what
went wrong. ValueError is one of the standard
Python exceptions.

This is how you can signal to Python that something bad happened: you raise an
exception. The code using the ‘refill()" method of "CoffeeMachine” shall wrap the
invocation in a ‘try block. The block does not have to surround the method call
directly, because exceptions "propagate" through code blocks. That is, it's perfectly
sufficient to invoke a function in a “try” block that invokes a function that invokes
another function that may raise an exception.

73

1)

2)

3)

Standard exceptions

BaseException

Exception

OSError
ArithmeticError
RuntimeError ValueError

NotImplementedError

There are LOTS of exception classes, refer to the manual for details.

Python gives you lots of standard exception classes that you can use in
appropriate situations, e.g. you can raise a NotiImplementedError exception if you
want to indicate that a certain feature has not been implemented yet. All these
exception classes are derived from BaseException. You can look them up in the
online documentation.

You can create your own exceptions by inheriting from Exception or one of its
subclasses. This is useful if you want to store specific information about the
condition that caused the exception.

Note that this exception hierarchy is somewhat controversial, but that's what we
have...

74

Making coffee at last...

kitchen.py

Generic exceptions

For simplicity's sake we use
the standard Exception
object, initiated to contain
an error message string,
because they are good

class CoffeeMachine:

def make coffee(self):

raise Exception("Machine is OFF")
if self.water < 1:

[if not self.on:

enough here. A much better raise Exception("Water tank EMPTY")
design would be to define if self.beans < 1:

your own [raise Exception("No beans in machine")
CoffeeMachineError

exception class, derived from self.water -= 1

Exception. self.beans -= 1

return "Enjoy this cup of coffee!"

Making coffee

The method first checks if the pre-requisites are met:
the machine must be ON, and there should be enough
water and beans. Then it uses one unit of water and
beans and returns the "cup of coffee”.

Which exception to raise? The programmer has a wide choice. Sometimes the
standard exception classes are appropriate: for instance, raise a TypeError in a
function that expects a list parameter and got a dictionary instead, or raise a
ValueError when a "wrong value" (e.g. negative number for cell counts) was passed.
Larger packages define their own exceptions that usually derive from Exception. We
could have done that, too, but that's too much for a simple class like CoffeeMachine.
In the end the class raises only standard Exception-s, passing an error message to its
initialiser.

reference Class reference slide

CoffeeMachine class "Constants" for everyone
“nitlatly on All instances of a class "see" the
C.lass water capacity same values. Use them for
variables - defining classwide "constants".
beans_capacity
@classmethod
Class .and foo(cls,params...)
static i
[TERE ¢staticmethod CoffeeMachine instance
bar (params...)
2 z self.on
i self.water
" ” members
Common" methods a1 Baana
Class methods know about the class only, .
not about a particular instance. They can be —init__(self)
used to return values that are valid for each main switch(self)
instance. Static methods don't know Instance =
anything about the class, they just belong methods make_coffee(self)
there logically. "Factory methods" that
create new instances are a good example. refill(self, what)

Most of the time we use instance data members and instance methods. We have
seen that class variables (that belong to the class itself, not to any particular instance)
can be useful to define classwide "constants". (There are no real constants in Python,
you can change the value of any variable.)

We have not used class methods and static methods. These are declared using the
@classmethod and @staticmethod decorators, respectively. The first parameter of a
class method is "cls", not "self": it knows about the whole class as such, but does not
belong to any individual instance. Class methods can be used to return values that are
equally valid for each instance of the class and don't depend on the instance data
members. Static methods are only loosely associated with the class. We will use later
a static method to create objects of a class: this pattern is called "factory method".

76

How to write a derived class

CoffeeMachine class

Base class / superclass

Deriving a class

Simply write the name of the
base class in parentheses after
the name of the derived class in
the class definition line.

kitchen.py

BetterCoffeeMachine class

Derived class / subclass

class CoffeeMachine:

Implements a basic coffee machine

... rest of the class
class BetterCoffeeMachine(CoffeeMachine):

Implements a better coffee machine

... rest of the class

77

Derived class variables

kitchen.py

class BetterCoffeeMachine(CoffeeMachine):

W

A better machine can also make cappuccino.

W

r# -- Class variables --

Lmilk_capacity = 5]_

What you cannot see here BetterCoffeeMachine class variables

The class variables initially on, milk_capacity: enough milk for 5
water_capacity and cappuccinos. This class variable had to be added
beans_capacity inherited from the base here because it is specific for the derived class.
class are still available in the derived class.

You do not need to define them again.

78

The initialiser method

kitchen.py

class BetterCoffeeMachine(CoffeeMachine):

def _ init__ (self):
L super().__init_ ()

self.milk = BetterCoffeeMachine.milk capacity

Initialize the base class BetterCoffeeMachine settings
The base class must be constructed first, The rest of the __init__ () method
butits __init__ () method is not contains the settings that are specific to
invoked automatically. You have to do the derived class.

this yourself, by referring to it explicitly

through super ().

Derived classes can refer to their base classes using super() . In the initialisation
example the __init__ () method of the base class is invoked through super() which
refers to the base class object. This is why the self parameter does not need to be
passed.

You may see old-style code from Python 2.x days that uses something similar to
CoffeeMachine.__init__(self) instead. This still works in Python 3 but you should use
the super().__init__ () idiom instead.

79

Adding a new method

kitchen.py

Method invocation class BetterCoffeeMachine(CoffeeMachine):

Methods can be invoked in an

other method by prefixing
them with self and the dot. def make_ cappuccino(self):
It does not matter if the | self.make_coffee()

method was inherited from a
base class or defined in the
current class.

if self.milk < 1:
raise Exception("Milk holder is EMPTY")

self.milk -= 1
Making cappuccino = return "Enjoy your cappuccino!"

We first make a normal coffee,
invoking the corresponding
method inherited from the
base class. Then we check if
there's enough milk, and if yes,
then we make the cappuccino »”
itself. \»

Here you can see a nice example of code reuse. We make cappuccino by making
coffee first, and our CoffeeMachine class already knows how to do that. In the
BetterCoffeeMachine derived class we just invoke the inherited ‘make_coffee()
method and then add the necessary ingredients.

80

Overriding an inherited method

kitchen.py

class BetterCoffeeMachine(CoffeeMachine):

[def refill(self, what):
if what == "milk":
self.m%lk = BetterCoffeeMachine.milk_capacity
else:
super().refill(what)

Overriding Refilling the better coffee machine

You can redefine a method We need to handle the case when the user
inherited from the base class by wants to refill the milk holder. Otherwise the
writing it again in the derived base class version of the method should be
class. Use this to model actions used via super () because the water and
that have (slightly) different coffee refilling procedure is the same as in the
meanings in both the base and the base class.

derived classes.

You may override a method in a derived class only if its "signature" (its name and its
list of parameters) is the same as in the base class. The version in the derived class
may refer to the base class version via ‘super()".

81

