We will learn about the linear algebra concepts necessary for the Biocybernetics /
Systems Biology course. The slides are accompanied by simple homework
assignments.

SAGE or NumPy/SciPy?

L

NumPy SciPy

—T —T
SAGE NumPy SciPy
A general-purpose computer Collection of Python packages Collection of Python packages
algebra system written in for working with multi- for scientific computation,
Python. It focuses on number dimensional real arrays. based on NumPy. Provi dels
theory and symbolic algebra, Vectors and matrices are linear algebra, s t.a tistics
but can be used for numerical special cases of these arrays. special func tic;ns i terp;; Jation
calculations as well. Can NumPy provides linear algebra Oetikaiion; in t;’gra tion %
handle integer and rational operations as well. https:/ R seipy: 01’3
vectors/matrices in a special https://www.numpy.org
way.
https://www.sagemath.org L T J

available from SAGE

import numpy as np
import scipy as sp

CoCalc offers two ways of doing linear algebra. You can either use the SAGE classes
and functions (which are somewhat special), or you can rely on the NumPy/SciPy
package collection. In the following we will try both.

Vectors

Xz
T azx, + by,
To a.’c2+by2
x=:1 . ax+by = .
T azx, + by,

X3

xs = vector([1.0,3.0,2.0]) Xn = np.array([1.0,3.0,2.0])
ys = vector([-2.0, 1.5, 3.4]) yn = np.array([-2.0, 1.5, 3.4])
Vector type NumPy array

Note that we use lists of
reals to tell SAGE that we
need vectors with real
elements.

One-dimensional NumPy
arrays have vector
semantics by default.

An n-dimensional vector is an ordered list of n numbers (usually real or complex). It
can be interpreted as the coordinates of a point in an n-dimensional space.

Scalar product and norm

n
Xiyi= Z%’yi
i=1

[l = v - x

xs.dot_product(ys)
| 9.3
ys.dot_product(xs)
| 9.3

norm(xs)

| 3.741657

[yl cos

Scalar product

Can be used to calculate the
projection of one vector onto
another or the angle between
the vectors.

Vector norm

The length of the vector:
the square root of the

scalar product of the

vector with itself.

np.dot(xn,yn)

| 9.3
np.dot(yn,xn)

| 9.3
np.linalg.norm(yn)
| 4.2201895

If two vectors are orthogonal to each other, then their scalar product is zero, because
cos 90° = 0. From this follows that the null vector is orthogonal to all other vectors.

Matrices and vectors

Matrix-vector multiplication €z
] =Aex
[= |- !
X
L » |-
X =
i
! €;
I
€3
(a1 a2 - ain z1 a1171 + @12T2 + *+* + A1nTn Y1\
Gz1 Gz -t Aoy Ty A21%1 + Q22T+ + A2p Ty Y2
\aml Am2 **° Omn In Am1Z1 + Gm2T2 + *** + AmnTn y'n/
L] oL J L J
I |
| The matrix A ‘ Scalar products...
The vector x ...of the matrix rows with the vector x.

Matrices are rectangular tables of numbers. The rows and/or columns can be
regarded as vectors; you can think about a matrix as a row vector of column vectors
or as a column vector of row vectors. If the numbers of the rows and columns are
equal then we have a square matrix.

The product of a matrix with a vector is defined as the scalar product of the row
vectors of the matrix with the vector. By multiplying a vector with a matrix we get a
new vector which is a rotated and scaled version of the original vector.

Solving linear equation systems

221 + 322 =6 (2 3
41 + 929 = 15

A

A-x=b

4 9
N —

X b

The formal solution

By multiplying the right-hand-side vector with
the inverse of the coefficient matrix, we get the

x=A"1.b

SAGE style

= matrix([[2,3],[4,9]1])
= vector([6,15])
naive way, don't do it!
= A.inverse() * b

(3/2, 1)
proper way
=A \ b; x

(3/2, 1)

— X %— X %O P

solution. This is not the practical way,
however...

NumPy style

= np.array([[2,3],[4,9]])
= np.array([6,15])

A
b
naive way, don't do it!
Ainv = np.linalg.inv(A)

x = Ainv.dot(b)

| array([1.5, 1.])

proper way

X = np.linalg.solve(A,b); x
| array([r 1.5, 1.])

Of course you can solve a linear equation system only if there are as many equations
as unknowns (i.e. m = n). Additional conditions must be satisfied, e.g. the equations

should not be linear combinations of each other (we say they shall be linearly

independent), nor should they be "contradictory". All these requirements can be
formalised using mathematical techniques that go beyond the scope of this lecture.
There are special algorithms that are used by numerical packages such as SAGE or

NumPy/SciPy to solve linear equation systems. They NEVER calculate the matrix
inverse, because it can be done only in O(N3) time.

Matrices as linear operators

€

y=Aex

€3
(aA + ,BB) X = aA. X+ BB - X H Linear combinations |
(A+B)-C=A-C+B-C —
Distributivity |
A-B+C)=A-B+A.-C
(A $ B) -x=A-" (B . X) H Associativity |

(A-B)-x# (B-A)-x . vovcommutatnity |

Because the product of a matrix and a vector results in a new vector that is a rotated
and scaled version of the original vector, we can say that a matrix transforms a vector
into another one by rotating and dilating/contracting it. Matrices can thus be
regarded as operators, mapping vectors onto other vectors. Some of the operator
properties are listed on the slide.

Matrix-matrix multiplication [1]

Matrix-matrix multiplication
| o E
| 2 =
' X1 Xy [--—- [% = b1 bz —_—— bp
H
| an | #
mxn nxp mxp
a;; @2 - Qin Ty T2 v Tip bi1 b1 bip
a1 Qg -+ QGp To1 Tpp v Top ba1 b2 bap
Am1 Am2 Qmn Tn1 Tn2 Tnp bml bm2 bmp

The matrix-matrix multiplication is a generalization of the matrix-vector
multiplication. We multiply each column vector of the second matrix (X) by the first
matrix (A) and use the result vectors as the columns of the result matrix (B). The

number of columns of the first matrix (n) should be equal to the number of rows of
the second matrix.

Matrix-matrix multiplication [2]

2 3\ (4 5_ (26 31
4.9)°\6 7)7\70 83

A = matrix([[2,3],[4,9]])
B = matrix([[4,5],[6,7]])
print (A*B)
| [26 31]
| [70 83]
print(B*A)
| [28 57]
| [40 81]

SAGE style

) (6 7) G 8)-(o &)

p
A -B=|> agar| #B-A
k=1

NumPy style

A = np.array([[2,3],[4,9]])
B = np.array([[4,5],(6,7]])
print(np.matmul (A,B))

| array([(r2e, 31j,

| (70, 83]])
print(np.matmul (B,A))

| array([r2s, s7j,

| (40, 81]])

Unlike the multiplication of scalars, in general matrix multiplication is NOT
commutative, i.e. the order of the matrices does matter.

Note that if you use NumPy-style matrices, then the multiplication operator * will
perform element-wise multiplication! This is quite dangerous because SAGE-style
matrices can be matrix-multiplied using the * operator.

Null and identity matrices

00 0 Null matrix
N) ere (i)

o=|. . . i Transforms any vector into the null vector. Plays the
- S : same role ("zero element") as the number 0 in scalar
00 --- 0 multiplication.

MatrixSpace(RDF,3,3).matrix() np.zeros((3,3,))

| [0.0 0.0 0.0] | array([[0., 0., 0.],

| [0.0 0.0 0.0] [0.s Osp 0],

| [0.0 0.0 0.0] | 0as 0sp 0+]3)
10 0 Identity matrix
01 0

I=1]. . . : Transforms any vector into itself. Plays the same role

S e ("unit element") as the number 1 in scalar
00 1 multiplication.

identity matrix(3) np.eye(3) # or np.identity(3
| [100] | array([([1., 0., 0.],
| (0 10] | C0:p 1ip 0.]4
| 1001 | (0., 0., 1.]))

The identity matrix should be square (i.e. NxN), the zero or null matrix need not be

square, can be NxM.

10

The diagonal matrix

A 0 0 0
0 X 0

A=
0 0 Xn

diagonal matrix([1.0,2.0,3.0])
| (1.0 0.0 0.0]
| (0.0 2.0 0.0]
| (0.0 0.0 3.0]

Diagonal matrix

Multiplying a matrix from the left
with a diagonal matrix is equivalent
of multiplying the rows with the
corresponding main diagonal
elements.

np.diag([1,2,3])
| array(([1.,

| [0.,
| [0.,

Diagonal matrices make linear algebra operations "simpler". We will make use of

them later when we discuss eigenvalues and eigenvectors.

11

Some matrix operations

Transposition
T e - This operation "flips" a matrix by
A° = [a’l.?] — [an] interchanging the rows with the
T T T columns. Square matrices are
= reflected" over the main diagonal.
(A ¢ B) B"-A "reflected" h in di 1.

M = matrix([[1,2],[3,4]])
M.transpose() TP-t22::§3ii(zt -
j o | [3, 911)
| (2 4)
& Trace of a matrix
tT(A) = z : @i The sum of the diagonal elements.
=1 o Taking the trace of matrix products is
T analogous to the scalar product of
tr (A B) = E Qg bz j vectors.

2,j=1

np.trace(A)
11

transpose(A) in SAGE and np.transpose(A) in NumPy style both transpose matrices.

The np.trace(A) function works only in NumPy, because trace() in SAGE means tracing
the execution...

Eigenvalues and eigenvectors

B
) _ "
{ e X

A X =)\kxk

lA-X|=X-Al /_, \\

Eigenvector Eigenvalue

Diagonalisation

The amount with which
the length of the
eigenvector changes. Can
be real or complex
numbers.

The matrix A does not
rotate this vector during
multiplication, only
changes its length.

The eigenvalues are in
the diagonal matrix A,
the eigenvectors are the
columns of X.

In general matrices rotate and scale (dilate or contract) the vectors during matrix-
vector multiplication. For a rectangular nxn matrix, are there any vectors which are
not rotated by the matrix, only the length is changed? In most cases we can find such
vectors: these are the "eigenvectors" of the matrix (the German word "eigen" means
"own", it has nothing to do with the German Nobel laureate Manfred Eigen). The
factor by which the matrix dilates or contracts its eigenvector is the "eigenvalue",
indicated by A in the equation above. In general an nxn matrix has n eigenvalues and
eigenvectors, they can be bundled together into the eigenvector matrix X and the
diagonal eigenvalue matrix A. Sometimes more than one eigenvalues have the same
value, they are called "degenerate".

13

Matrix diagonalisation example

3v3
4

|

M.eigenvalues()

| [5.0 2.0]
M.right_eigenvectors()

| [(5.0,[(0.866,0.5)],1),
| (2.0,[(-0.5,0.866)],1)]

A1 = 5.0, x; = (V3/2,1/2)
Ay = 2.0, x5 = (—1/2,V3/2)

evals,evecs = np.linalg.eig(M)
print(evals)

| [5. 2.]

print(evecs)

| [[0.866 0.5]

| [-0.5 0.866]]

Eigenvectors from SAGE

Eigenvectors from NumPy

You get a list of triples containing the
eigenvalue, the corresponding eigenvector
and the multiplicity. (There are also "left
eigenvectors" which we will need for
analysing Markov chains.)

They are returned as the rows of the matrix
of eigenvectors (X on the previous slide).

This is just a concrete example, illustrating also the fact that symmetric matrices with
real elements have real eigenvalues (in general eigenvalues can be complex
numbers).

