
Most of the time we will solve differential equations. This handout guides you 
through the technical details of how to solve differential equations in the CoCalc 
environment.

1



In order to perform symbolic computations, you need to tell SAGE about the variables 
and functions (in the mathematical sense, not in the usual Python sense!) you are 
going to use. This means that SAGE symbolic variables must be created by invoking a 
`var` constructor. Similarly, mathematical function objects are created by the 
`function(name)(independent variable)` syntax. Here we create an independent 
variable `t` (for "time"), and the function `y` which is going to represent the solution 
of a simple differential equation. The equation itself is defined by the syntax `diff(y,t) 
== right_hand_side_expression`. Equations are also SAGE objects and therefore can 
be saved in a (Python) variable.
The equation is solved by invoking the `desolve` method. You pass the equation, the 
function object representing the unknown function, the variable object representing 
the independent variable ("ivar"), and the initial conditions ("ics"). Because the 
equation in this example is very simple, `desolve` can return the solution in symbolic 
form as a SAGE expression.

2



We need to define two function objects to represent the two solutions y1 and y2. The 
equations themselves are saved in separate SAGE equation objects and then bundled 
into a list, but they can also be put in a list directly. We also need two initial 
conditions, one for each unknown function.
The solution is obtained by invoking the `desolve_system` function that takes a list of 
differential equations, a list of the unknown functions, and the initial conditions 
(ics=...). The first element of the initial condition list is the value of the independent 
variable (usually 0), and then the initial values of the first, second, ... , n-th functions.
The solution is returned as a two-element list. We extract the right-hand-sides of the 
solution expressions and store them in SAGE objects. This is not necessary but will 
simplify plotting.

3



The plotting commands in SAGE generate graphics objects which can be "added" to 
each other and `show()`-n later. If you invoke a single `plot` command then you see 
the resulting graphics immediately.

4



The "phase space" represents the solutions of ODEs as a collection of trajectories. 
The initial condition selects a trajectory and the system then moves along it. For 2 
and 3 variables the phase space can be plotted as a "vector" or "stream" plot. In our 
case at each point $(y_1, y_2)$ the local direction of the trajectory will be given by 
$(dy_1/dt, dy_2/dt)$ (in LaTeX notation), these will be the "tangent vectors" that are 
plotted.

5



Most differential equations cannot be solved in a closed form and numerical 
approximation algorithms have to be used. Lots of numerical methods are available 
to solve differential equations with high accuracy. The trick is to re-formulate the 
differential equation as an integral equation, and then use a stepwise approximation 
to the right-hand side. The slide shows the venerable “4th-order Runge-Kutta” 
method. Depending on the properties of the differential equation, other methods 
might be more efficient.

6



The unknown functions are now represented by SAGE variables, not SAGE functions, 
because they are not symbolic expressions but rather a list of values calculated at 
prescribed "time points" (values of the independent variable). For the same reason 
the independent variable is given as a list of abscissa points. The SAGE-specific 
`srange` call generates a uniformly spaced list of points.
Only the right-hand sides of the equations need to be specified, the solving function 
`desolve_odeint` "knows" that we are solving first-order DEs. The initial conditions 
are now a list of the y1,y2,... initial values, because the first time point is already 
specified in the `tps` list. The names of the unknown function variables need to be 
passed as the `dvars` parameter.
The solution is returned as a 2-dimensional NumPy array. The rows correspond to the 
"time points", the columns to the solutions. In our example there are two columns 
which we extract for plotting.

7



Because the `line` function expects a list of point coordinate pairs, we `zip` the 
abscissa points in `tps` ("X" coordinates) with the solution vectors ("Y" coordinates). 
This is important if you specified a non-uniformly spaced set of abscissa points.
The numerical solution looks very similar to the exact solution, which is reassuring J

8


