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Primer on Fourier Transforms

Introduction

We start our discussion with the definition of the Fourier Transform of a function h [t ]:

H[w] = Fh[t} etvtat 1)
Then the inverse transform of H[w] is given by
1 ‘
h{t] = — fﬂ[w] e ¥t dw (2)
277 -

This definition for the Fourier Transform pair is not universal, however, and various definitions in the
literature can often lead to confusion. A more general definition for the Fourier Transform of £ [t ] is

where the parameters a, b can take on various values. The values of the parameters in the expression
given by Eq. (1) are b = 1, and a = 1. In Mathematica these options can be set in the function
FourierTransform. The default values are a = 0, b = 1. Different disciplines tend to have their
favorite definitions. For example, in signal processing and electrical engineering the parameters of
choice are: {a, b} - {0, -2} or {-1, -2 7}.

Consider the waveform 3 Cos|a t]. Here a represent the angular frequency which is equal to the fre-
quency f (s™!)by the usual formula:

p a
= — 4
2 (4)

The period T is related to the frequency f by

1 27
T=—=— (5)
f o
The Fourier Transform of the cosine wave form g Cos[a t] using the default values for the parameters

{a,b} gives

FourierTransform[BCos[at], t, w]

[ 7t | 7T
— [ DiracDelta[-a+w] + — [ DiracDeltaa + w]
2 2

Thus in the frequency domain, the Fourier Transform of a cosine function results in two real-valued

Dirac delta functions, centered at w = + o with magnitude 8+ 5t / 2 . Note that the magnitude of the
Dirac delta function is proportional to the original amplitude of the wave form. The actual value depends
on the parameters {a,b} us in the transform, see Eq. (3) above. Consider next the Fourier Transform of
the waveform function
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1 1
h[{t] =Cos[2mfgt] - —Cos[6mfot] + —Cos[1l0 £y t] (6)
3 5

In this case the waveform is a linear superposition of 3 cosine function with different frequencies and
amplitudes. The resulting transform is a sum of 3 Dirac Delta functions centered at the angular frequen-
cies

w=+2nnfy, w=+26m1fy, w==+10w£, (7)
with magnitudes proportional to the original amplitudes of the cosine functions in the wave form. Here is
the Mathematica rendition of the Fourier Transform

1 1
h[t_] :=Cos[2mfot] - — Cos[6mfot] + — Cos[10 7 £, t];
3 5

FourierTransform[h[t], t, w]

1 7T 1 7T 7T
— — DiracDelta[w-10m7fg] - — | — DiracDelta[w-6 tfy] + | — DiracDelta[w-2tfy] +
5 2 3 2 2
7T 1 7T 1 7T
— DiracDelta[w+2mmfy] - — — DiracDelta[w+6 mfy] + — | — DiracDelta[w+ 10 71 £4]
2 3 2 5 2

Now let us replace the Cos[6 1 £, t]in h(f) with Sin[6 7t £, t]

1 1
h2[t_] :=Cos[2mfot] - — Sin[6 mfot] + — Cos[10 7w £, t];
3 5

FourierTransform[h2[t], t, w]

1 7T 1 7T
— — DiracDelta[w-107fy] - — 1 | — DiracDelta[w-6mfq] +
5 2 3 2
T 7T
— DiracDelta[w-2mfy] + | — DiracDelta[w+ 2 fy] +
2 2
1 7T 1 7T
— 1 | — DiracDelta[w+ 6 mfy] + — | — DiracDelta[w+ 10 7 £4]
3 2 5 2

Note that the magnitude in the frequency domain for that mode is an imaginary number. Thus in general
the Fourier Transform is a complex quantity which can be represented as

H(f) =R (£) +1I (f) = | H(f) | e ®F
In this expression R(f) is the real part of the Fourier Transform, I(f) is the imaginary part, | H(f) | is the
amplitude or Fourier spectrum of h(t) and is given by R?>+ 17 . The quantity 6(f) is the phase angle of
the Fourier transform and is given by Tan™' [I(H)/R(H)]
As our final example we consider the function
h3[t_] := UnitStep[t] Be™**

Here is a plot of this function for a select set of parameters {3 - 2, a - 0.5}
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Plot [Evaluate[h3[t] /.{8~> 2., a > 0.5 }], {t, -5, 10},
PlotRange -» All, PlotStyle -» RGBColor[0O, O, 1], Frame -» True, Axes - False,
FrameLabel -» {"t", "h(t)"}, Epilog » {Dashing[Small], Line[{{O0, 0}, {0, 2}}1}]
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The Fourier Transform of this function is
H3[w_] = FourierTransform[h3[t], t, w]
o

N2 (a0 -1 w)

This clearly show that the Fourier Transform of h3 [t ] is a complex variable. We can interrogate its
properties as follows. Here is the real part of h [w]
realH = ComplexExpand[Re[H3[w] ], TargetFunctions » {Re, Im}] // PowerExpand
ap
m (O(2 + OJ2>
An here is a plot of Re (H[w]) as a function of w

Plot[Evaluate[realH /.{a > 2, B > 1}], {w, -4, 4},
PlotStyle -» RGBColor [0, 0, 1], Frame -» True, FrameLabel -» {"w", "Re (H[w]) "}]

0.20 F7 T T T T T T T T T T T T =

0.15F 1

Re(H[w])

0.10 1

0.05 4

Next, let us consider the imaginary component of H[w]



4 PrimerFourierTransforms.nb

imagH = ComplexExpand[Im[H3[w] ], TargetFunctions » {Re, Im}] // PowerExpand
Bw

V2 (ocz + wz)

Shown below is a plot of Im (H[w])

Plot [Evaluate[imagH /.{a > 2, B> 1}], {w, -4, 4},
PlotStyle -» RGBColor [0, 0, 1], Frame -» True, FrameLabel -» {"w", "Im(H[w]) "}]
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w

Final here is the amplitude |H(f)|

absH = ComplexExpand [Abs [H3[w] ], TargetFunctions » {Re, Im}] // PowerExpand
B

V2 A\ o?+w?

and its plot

Plot[Evaluate[absH /.{a> 2, 3> 1}], {w, -4, 4}, PlotStyle » RGBColor[0O, O, 1],
Frame -» True, FrameLabel -» {"w", "|H[w]|"}, Axes -» False]

0.20 FT j j j j j j j j j j j j q
0.18 - 1

0.16 - 1

[H[w]]

0.14 - q
0.12 1

0.10 1

-4 -2 0 2 4

w

In summary, the Fourier Transform of a real function results in a complex variable. Further, the fre-
quency domain of the transform function includes negative frequencies.
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Discrete Fourier Transform

In this section we consider the discrete version of the Fourier Transform. We start our discussion by
considering the following

flt] =Cos[at] (8)
As before a represent the angular frequency which is equal to the frequency (s‘1> by the usual
formula:
[0
f= o 9)

and the period T is related to the frequency f* by
1 27
T=—=— (10)
f o
We showed in the previous section that the Fourier Transform of this function gives

FourierTransform[Cos[a t], t, w]

[ | 7t
— DiracDelta[-a+w] + | — DiracDelta[a + w]
2 2

Thus in the frequency domain we have spikes at w = +a. Thus in the frequency domain w represents

the angular frequency. On the other hand if we use different FourierTransform parameters, the interpreta-
tion is different. With {a, b} - {0, -2 x}, the Fourier Transform results in spikesatw = + a/ 2 . In
this case the Dirac delta spikes define the frequency of the function! Here is the result using Mathemat-
ica

FourierTransform[Cos[at], t, w, FourierParameters - {0, -2 7}]

nmDiracDelta[a -2 mw] + st DiracDeltalo+ 2 T w]

Thus the Fourier Transform can be in expressed terms of frequency or angular frequency. What interpre-
tation we used is based on the FourierTransform parameters we select.

In the next several examples we illustrate properties of the discrete Fourier Transform.

Sampling a function

In this section we are going to sample the function % Sin(2t), and then in a later section compute its
discrete Fourier transform. We consider the following Mathematica function

£[t_]1 =1/58in[2 t]

1

~ sin[2t]
5

Here is a plot of this function for x in the range 0 < t < 4
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Plot[f[t], {t, O, 2w}, PlotStyle » RGBColor[0O, O, 1],
Frame -» True, FrameLabel -» {"t", "f(t)"}]

02 T T T T T T T

f(t)

0.0

We are going to sample this function at intervals At to create a set of N equally spaced points. Since
the range of t for our functionis t = T = 2 7, then the time step for our sampling is
T
Atg = —— (11)
N-1

Thus if t; represents the value of t after j time steps we have

t;y=Jjots, 3=0,1,2, ., N-1 (12)
where

ty 1= (N-1) Atg =T (13)

Using these definitions, it follows that the value of our function evaluated at these time steps is

fy=£f[t5], j=0,1, .., N-1 (14)
Now if us apply this discretization to our function. First we define the number of points Npts and the
range Tmax
Npts = 32;

Tmax = 2 7;

From these to quantities we can compute the spacing between the sample points
At = (Tmax / (Npts-1) // N)

0.202683

Using these values, we obtain a discrete version of our function given by the following list of data with
length 32:

fdata = Table[f[t] , {t, O, Tmax, At}]

{O., 0.0788712, 0.144959, 0.18755, 0.199743, 0.179561, 0.130274,

0.0598726, -0.0202337, -0.0970604, -0.158155, -0.193615, -0.197694,
~0.169729, -0.114254, -0.0402597, 0.0402597, 0.114254, 0.169729,
0.197694, 0.193615, 0.158155, 0.0970604, 0.0202337, -0.0598726, -0.130274,

-0.179561, -0.199743, -0.18755, -0.144959, -0.0788712, -9.79717 x 10 *7}

Let us create a point object for our sample points to display on the graph
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dataPts = Join[{Red, PointSize[0.02]}, Map[Point[{#, £[#]}] &, Range[0, Tmax, At]]];
Here is a plot that shows how we sampled our function

Plot[f[t], {t, O, Tmax}, PlotStyle -» RGBColor[O, O, 1],
Epilog -» dataPts, Frame -» True, FrameLabel -» {"t", "f(t)"}]

f(t)

In summary we have N=32 sample points and N-1 intervals of length At=0.202683. Note that N-At+2x.
This is going to be important later.

Discrete Fourier Transform Pair

We begin our discussion by noting the following orthogonality condition

=2

-1 .
Qi 27T TK/N i 27nk/N _ (N 1fr:n)
. 0 ifr+n

~

We define the discrete Fourier transform of f(t) as

N-1
) = > f (kat) e*2™%Y n-90,1, ., N-1 (16)
=0

4
N At

o

where t, = k Atis the k™ sample point, and f, = n/(N At) is the n'" frequency. The inverse transform is
then

lel )
£(tx) == ) F (fa) 2™, k-0,1,., N-1 (17)
N

n=0
We can use the orthogonality property to prove that (16) and (17) are Fourier Transform pairs by direct
substitution of (17) into (16):

N-1 N-1
F (f,) = Z i ZF (fy) @t27TK/N| g i27nk/N
Nr:O

~

=4

1 N-1

- EZF (£r)

r=0

@12ﬂrk/N e—2nnk/N

1
=0

o

Applying the orthogonality condition gives
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1
F (fn) = —F (£fn) N=F (fy) (19)
N
In Mathematica we work with lists, and thus it is convenient to transform the summation terms (17) and
(18)to startfrom n =1, k= 1,ratherthann =0, k = 0. It will be convenient as well to rescale our
transform pair so that the definitions are consistent with those used by Mathematica with the default

FourierParameters. Our definitions for the Discrete Fourier Transform (DFT) pair become

1 X .

F (fn> = T Zf (tk) e]l27r(n—1) (k—l)/N, n-= 11 21 wyr N (20)
VN k-1
1 X .

f (tk> = T ;{]F (fh) 6712ﬁ(n71)(k71)/Nl k=1,2, .., N (21)
VN n-1

Thus the Discrete Fourier Transform (DFT) pair relates N points in the frequency domain with N points
in the time domain.

Example |: Discrete Fourier Transform

In a previous section we sampled the function % Sin[2 t] over the interval 0 <t < 2 &, with N=32 sample

points and At =0.202683. The frequency of our Sine functionis f =2/(2 1) =0.31831 We will use Eq.
(21) to compute the DFT of our data stored in the variable fdata
Npts
Fdata[n_ ]| 1= —— Z fdata[[k]] et27 (»-1) (k-1)/Npts
VNpts k-1
This gives the Fourier components with amplitudes Fdata[n] and frequencies f, = (n — 1)/(Npts At), with
n=1,2, ..., Npts.

Here are the amplitudes of our data in the frequency domain. Note that the amplitudes involve complex
values

FdataList = Table[Fdata[n], {n, 1, Npts}]

{-1.44889x107'%, 0.00216654+0.0219972 i, 0.10782+0.542046 i,
-0.0134289 -0.0442693 1, -0.00963811 -0.02326851, -0.00852602-0.0159511 i,
-0.0080248 -0.012011, -0.00775178 - 0.00944557 1, -0.00758609 - 0.00758609 i,
-0.00747842-0.00613738 1, -0.00740534 - 0.00494809 i, -0.00735444 - 0.00393103 1,
-0.00731874-0.00303152 1, -0.00729405-0.00221263 1, -0.00727787 - 0.00144766 1,
-0.00726868 - 0.000715903 1, -0.00726571, -0.00726868 + 0.000715903 i,
-0.00727787 +0.00144766 i, -0.00729405 + 0.00221263 i,
-0.00731874+0.00303152 i, -0.00735444 +0.00393103 1, -0.00740534 + 0.00494809 1,
-0.00747842+0.00613738 1, -0.00758609 + 0.00758609 1, -0.00775178 + 0.00944557 i,
-0.0080248 +0.01201 1, -0.00852602 +0.0159511 i, -0.00963811 +0.0232685 1,
-0.0134289 +0.0442693 i, 0.10782- 0.542046 i, 0.00216654-0.0219972 i}

We can compare these values with those returned by the Mathematica function Fourier:
Chop [FdataList - Fourier[fdata]]
{o, o, o, o, o, o, o, o, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O}

where we have used the function Chop to replace terms that are smaller in absolute magnitude than
1071° with the integer 0. Thus the Fourier components using the two methods are identical within an



PrimerFourierTransforms.nb | 9

error of 10710

Although frequency distributions are generally complex functions, the relative strength of various fre-
quency components can be assessed from the power spectrum. From Parseval's theorem the power
spectrum in the time domain is related to the power spectrum in the frequency domain

=4

-1 N-1

D E ()= ) | F () |? (22)

=0 n=0

o

We use the Mathematica function Fourier to obtain a discrete transform
FData = Abs[Fourier[fdata]]

{9.81308x 107", 0.0221036, 0.552665, 0.0462613, 0.0251856, 0.0180867, 0.0144443,

0.0122192, 0.0107283, 0.00967441, 0.00890632, 0.00833912, 0.00792174,
0.00762227, 0.00742045, 0.00730385, 0.00726571, 0.00730385, 0.00742045,
0.00762227, 0.00792174, 0.00833912, 0.00890632, 0.00967441, 0.0107283,
0.0122192, 0.0144443, 0.0180867, 0.0251856, 0.0462613, 0.552665, 0.0221036}

If we inspect the above data, we observe that the maximum amplitudes occur at position n =3 and n
=31, where n denotes the position in the data list In the following plot we show the raw data of the
spectrum plotted against the value of the index n=n—1 in Eq. (22). For plotting purposes we create a
list of values {0, Npts — 1}. Recall from the definition of the transform, values of n > Npts/2 represent
negative frequencies

xcoor = Table[k, {k, O, Npts-1}];

FPlot = ListPlot[Transpose[{xcoor, FData}],
Joined -» False, AxesOrigin » {0, 0}, PlotRange -» All, Frame - True,
PlotStyle » {Blue, PointSize[Medium]}, FrameLabel - {"ﬁ" ;s " |F(wy) |"}]

051 il
0.4; b
’_20.3; 1
3t ]
= [
02 ]
0.1 i
° ° ]
00;0. ®®ccc000000000000000000°’ ®
i I | | L . .
0 5 10 15 20 25 30

n

Let us connect the index n with actual frequencies. The discrete frequencies f, for the horizontal-coordi-
nate axis (abscissa) are related to the index n by

n (23)

fo=——, n=0,1, 2, .., Npts-1
Npts At

Here are the corresponding frequencies
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Npts = 32;

Tmax = 2 7;

At = (Tmax / (Npts-1) // N);

freq = Table[n/ (Npts At), {n, O, Npts-1}]

{0, 0.154181, 0.308363, 0.462544, 0.616725, 0.770907, 0.925088, 1.07927,
1.23345, 1.38763, 1.54181, 1.69599, 1.85018, 2.00436, 2.15854, 2.31272,
2.4669, 2.62108, 2.77526, 2.92945, 3.08363, 3.23781, 3.39199, 3.54617,
3.70035, 3.85453, 4.00872, 4.1629, 4.31708, 4.47126, 4.62544, 4.77962}

Thus the maximum amplitude occurs at a frequency f, =2/(32 0.202683)=0.30836. The actual fre-
quency of the input single was f = 0.31831.

Here is the same plot except now we use the angular frequency w,=2x f,, as the abscissa

ListPlot[Transpose[{2 7 freq, FData}], Joined » False, AxesOrigin -» {0, 0},
PlotRange » {{0, 31}, All}, PlotStyle » {RGBColor [0, O, 1], PointSize[0.015]},
Frame -» True, FrameLabel -» {"w,", "Amplitude"}]

T ‘ T T T T T T T T T T T T T T T T T T T T T T . T :

0.5 L ]

03} p

Amplitude

02f 5

0.1fF 1
[ ° °
L ®e0ccc00000000000000000°®
00' T S S S S T S O AN SO SO R

0 5 10 15 20 25 30

Wy

Note that the peak amplitude occurs at an angular frequency w, ~ 2. Values of w,, > w4 represent
negative angular frequencies. That is, for the 32 data points, the amplitude plot is folded about
Npts/2=16.

Recall that the continuous Fourier transform of a function f(t) is symmetric about w = 0 frequency. Here
is the continuous amplitude spectrum for our function % Sin[2 t]:

1
H4[w_] = FourierTransform[— Sin[2t], t, w]
5

absH = ComplexExpand [Abs[H4[w] ], TargetFunctions » {Re, Im}] // PowerExpand

1 7T 1 7T

—1 | — DiracDelta[-2+w] - — i | — DiracDelta[2 +w]
5 2 5 2

1 7 1 7T

— | — DiracDelta[-2+w] - — | — DiracDelta[2 + w]

5 2 5 2

Since the discrete form for the power spectrum is symmetric about the mid-point of the data list, we
need only consider half of the transformed data to determine the spectrum. In this example the maxi-
mum occurs at w,~2. This can be readily seen by simply plotting the data for the first 5 points
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ListPlot [Transpose[{2 iw freq, FData}], Joined -» False, AxesOrigin -» {0, 0},
PlotRange » {{0, 5}, All}, PlotStyle » {RGBColor [0, O, 1], PointSize[0.015]},

Frame -» True, FrameLabel -» {"w,", "Amplitude"}]

05}

0.4

0.3

Amplitude

0.2

0.1

0.0

o

A careful inspection of this plot shows that the discrete transform has not reproduced the Fourier Trans-
form of our function, which is a Dirac delta function centered at w=2. The power spectrum has small but

finite values at wg, w4, ws, ws. Also, the value of w, + 2!

We can improve matters by being careful how we sample the function.

Example 2:

In this example we will drop the last sample point
fdata2 = Drop[Table[f[t] , {t, O, Tmax, At}], -1];
We now have 31 data points

Length[fdata2]

31

This plot shows how the function was sampled

Plot[f[t], {t, O, Tmax}, PlotStyle -» RGBColor [0, O, 1], Epilog » Drop[dataPts, -1]]

-0.2F

As before we compute the spectrum
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FData2 = Abs[Fourier[fdata2]];

The discrete frequencies are

freq2 = Table[n/ ((Npts-1) At), {n, O, Npts -2}];
An then plot the results for the first 5 points

FPlot2 = ListPlot [Transpose[{2 i freq2, FData2}],
Joined -» False, AxesOrigin » {0, 0}, PlotRange -» {{0O, 5}, All},
PlotStyle » {RGBColor [0, O, 1], PointSize[Medium]}, Frame » True,
FrameLabel -» {"w,", "|F(wy) |"}, Epilog -» {Dashing[Small], Line[{{2, 0}, {2, 0.6}}]}]

— —
05k ]

04f

03f

[F(w,)|

02f

o1f

00 . . . . e

]
2

LL)”

The discrete transform now exactly reproduces the Fourier Transform. We have a Dirac delta-like
function at wz = 2. Examples 1 and 2 show how the sampling strategy can affect the quality of the
spectrum. This is called leakage. It occurs when the truncation interval for sampling (N At) is not a
multiple of the period T =2 x/f. In our previous example the truncation interval was

N At= (32 x0.202683) = 6.485856, while in this example the truncation interval is
NAt = (31x0.202683) = 6.283173 =2 T

Example 3

We will use the same waveform as earlier, viz. f(t) = % Sin(2 t). In this example we choose the truncation
interval (N At) to be a multiple of the period T=1/f =2n/w

w = 2; Npts = 31;

Tmax =4 (27/ 2);

At = (Tmax / (Npts) // N)
At Npts / Tmax

0.405367

1.

From this data we can calculate the frequency of our signal
freq =N[w/ (27)]
0.31831

As before we compute the Npts sample points and display them on the signal



dataPts3 = Join[{RGBColor[1l, O, 0], PointSize[0.02]},
Map[Point[{#, £[#]}] &, Range[0, Tmax - At, At]]];
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Plot[f[t], {t, O, Tmax}, PlotStyle -» RGBColor [0, O, 1], Epilog » dataPts3]

0.2

0.1

-0.2

fdata3 = Table[f[t] , {t, O, Tmax - At, At}];

Length[fdata3]

31

Then compute the spectrum

FData3 = Abs[Fourier[fdata3]];

VY

Next we sample our function

We calculate the discrete frequencies for the horizontal-coordinate axis from

freq = Table[k / (Npts At), {k, O, Npts-1}];

fx

k

= ’
Npts At

k=0,1, 2,

w, Npts -1

FPlot2 = ListPlot [Transpose[{freq, FData3}], Joined -» False, AxesOrigin -» {0, 0},
PlotRange » {{0, 1}, Al1l}, PlotStyle » {RGBColor[0, O, 1], PointSize[0.027 ]},

Frame -» True, FrameLabel » {"f", "|F(w) |"}]

[Fw)]

05

03
02}
0.1}

0.0p

N )
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freq[[5]]
0.31831

Thus we see that we have a maximum signal at £, ~ 0.31831, which is in full agreement with actual
frequency of f=0.31831.... We can also display the plot in terms of the angular frequency w

FPlot2 = ListPlot [Transpose[{2 i freq, FData3}], Joined -» False, AxesOrigin -» {0, 0},
PlotRange » {{0, 10}, All}, PlotStyle » {RGBColor[0O, O, 1], PointSize[0.027 ]},

Frame - True, FrameLabel -» {"w,", "Amplitude"}]

05
04f

03f

Amplitude

000 ® ®© @ ., © © © 0000000600000

0 2 4 6

Wi

As expected the maximum occurs at w4 = 2.

Example 4

8

We will repeat the above calculation in Example 3 but now we use a Hanning Filter to suppress leak-

age when the truncation interval is not a multiple of the period T.

w = 2; Npts = 32;
Tmax =4 (27/2);
At = (Tmax / (Npts-1) // N)

0.405367

In this case Npts At= 12.971744 +nnx
The Hanning function H(t) is given by
1
H(t) = — (1-Cos[27t/T])
2

Here is the Mathematica implementation

1
H[t_] := — (1-Cos[2xt/ Tmax])
2

fdata4 = Table[H[t] £[t] , {t, 0, Tmax, At}];

FData4 = Abs[Fourier[fdata4]];

dataPts4 = Join[{RGBColor[1l, O, 0], PointSize[0.02]},
Map[Point[{#, H[#] £[#]}] &, Range[0, Tmax, At]]];

Hereisaplotof H[t] £[t]

(25)



PrimerFourierTransforms.nb | 15

Plot[H[t] £[t], {t, O, Tmax}, PlotStyle -» RGBColor [0, O, 1], Epilog » dataPts4]

02

0.1

-02*+
Next we take the Fourier Transform of the data

FData4 = Abs[Fourier[fdata4]];

freq = Table[k / (Npts At), {k, O, Npts-1}];

FPlot2 = ListPlot[Transpose[{2 7 freq, FData4}],
Joined -» False, AxesOrigin -» {0, 0}, PlotRange -» {{0, 10}, All},
PlotStyle -» {RGBColor[0, O, 1], PointSize[0.02" ]}, FrameLabel » {"wy", "Amplitude"},
Frame -» True, Epilog » {Dashing[Small], Line[{{2, 0}, {2, 0.3}}1}]
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8

If we compare this plot with the one obtained in Example 3 we note that the leakage is reduced when
wx > 4. However, the non-zero components of the frequency are broaden or smeared about w,. Thus

we have a compromise. The peak amplitude occurs at ws =1.9375

Example 5 : Fourier Filtering

Consider a signal f(x)
f (x) =Sin (4 x) +0.8 Cos (8 x)

that has been contaminated with random noise

noisyData = Table[sin[4 x] +0.8" Cos[8x] +0.5 (RandomReal[] -0.5%), {x, 0,2,

27
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Here is a plot of the signal with noise

ListPlot[noisyData, PlotStyle » {Blue, PointSize[0.0137 ]},
Frame -» True, FrameLabel -» {"k", "y, "}]

10F ¢ . ° o

0s5F*

oo . ]

We can filter the data by taking the Fourier Transform of the signal and then removing components in

the frequency domain that have amplitudes less than some cut-off value. In this case we take as the cut-
off amplitude as 0.5

TransformData = Chop [Fourier[noisyData], 0.5];

Then we take the inverse Fourier Transform and remove any residual terms that are smaller than 10710

inverseTransform = Chop[InverseFourier [TransformData], 0.001];

27
pltl = ListPlot [Transpose [{Range [0, 2, —] , inverseTransform}] ’
100

PlotStyle -» Blue, Joined - True, Frame -» True, FrameLabel -» {"x,", "f (xx)" }]

1.0

VA M)

05} 1

£0x)

X

Here is the original data without the noise
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plt2 = Plot[Sin[4 x] +0.8" Cos[8 x], {x, 0, 27},
PlotStyle -» Red, Frame -» True, FrameLabel -» {"x", "f(x)"}]

1.OfFT

VL VLV M

—15F p

f(x)

If we combine the plots we can see that the Fourier Transformed data almost reproduces the originally
data

Show[pltl, plt2]

1.0

VLV

-05} 1

1)

Xk

We can also perform a spectral analysis of the signal. The data is sampled according to the following
specifications

w = 2; Npts = 128;
xmax = 2 7;
dx = (xmax / (Npts-1) // N)

0.0494739

noisyDatal =
Table[Sin[4 x] +0.8 Cos[8 x] +0.5~ (RandomReal[] -0.5), {x, 0, xmax, dx}];

FData5 = 2 Abs [Fourier[ noisyDatal] ]/ '\/ Npts ;

We generate the coordinates of our plot in terms of angular frequency

angularfreq = Table[ (k/ (Nptsdx)) (2x), {k, O, Npts-1}];
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FPlot5 = ListPlot [Transpose[ {angularfreq, FData5}],
Joined -» False, AxesOrigin » {0, 0}, PlotRange -» {{0, 30}, All},
PlotStyle » {RGBColor [0, O, 1], PointSize[0.027 ]},
Frame -» True, FrameLabel -» {"w,", "|£(xx) "},
Epilog -+ {Dashing[Small], Line[{{4, 0}, {4, 1}}], Line[{{8, 0}, {8, 1}}]}]
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The peak information is

{{angularfreq[[5]], FData5[[5]]}, {angularfreq[[9]], FData5[[9]]}}
{{3.96875, 0.992697}, {7.9375, 0.794037}}

Thus the spectrum shows that there are two prominent frequencies w~4 (3.9688) and w~8 (7.938) in
our noisy sample with amplitudes 1 (0.993) and 0.8 (0.794).

Sometimes it is nice to modify the plots for a specific application. For example, in the spectral plot
shown above, it would be nice to show each data as a "spectral line". In Mathematica this can be readily
done by writing a function that does precisely this. | have called this function SpectralPlot with the
following syntax

SpectralPlot[data, x_AxisLabel, y AxisLabel, x AxisRange]
Here is the function

SpectralPlot[data_, xAxisLabel_String, yAxisLabel_ String, dataRange_] :=
Module[{datapts}, ListPlot[data, PlotRange » {dataRange, All},
PlotStyle » {Blue, PointSize[Medium]}, Frame -» True, FrameLabel ->
{xAxisLabel, yAxisLabel}, Epilog » data /. {x_, y_} -> Line[{{x, ¥}, {x, 0}}111

Here is an example using that function
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SpectralPlot [Transpose[{angularfreq, FData5}], "wy", "amplitude"”, {0, 50}]
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Final Comments

In these notes we have covered the main ideas behind the Fourier Transform and how one interprets
the data. There is a lot more that we have not covered but the reader should now have a clear under-
standing of the principal manipulations that one does using Fourier Transforms. These ideas can be
readily extended to higher dimensions.
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have found to be excellent is given below

m E. Oran Brigham, The Fast Fourier Transform, Prentice Hall, 1974



